The dynamic threat from landslides following large continental earthquakes

dc.contributor.authorArrell , Katherine
dc.contributor.authorRosser , Nick J.
dc.contributor.authorKincey , Mark E.
dc.contributor.authorRobinson, Tom
dc.contributor.authorHorton , Pascal
dc.contributor.authorDensmore , Alex L.
dc.contributor.authorOven , Katie J.
dc.contributor.authorShrestha , Ram
dc.contributor.authorPujara, Dammar Singh
dc.date.accessioned2024-12-02T19:49:57Z
dc.date.available2024-12-02T19:49:57Z
dc.date.issued2024
dc.description.abstractEarthquake-triggered landslides show three important characteristics: they are often responsible for a considerable proportion of the damage sustained during mountain region earthquakes, they are non-randomly distributed across space, and they continue to evolve in the years after the earthquake. Despite this, planning for future earthquakes rarely takes into consideration either landslides or their evolution with time. Here we couple a unique timeseries of mapped landslides between 2014–2020 across the area of Nepal impacted by the 2015 Mw 7.8 Gorkha earthquake and a numerical landslide runout model overlain with building locations to examine how the distributions of both evolving landslide hazard and exposure intersect to generate a dynamic threat to buildings. The threat from landslide runout is shown to change in predictable ways after the earthquake, becoming more pronounced at mid- and lower-hillslope positions and remaining in the landscape for multiple years. Using the positions of our mapped landslides as a starting point, we can identify a priori the locations of 78% of buildings that were subsequently impacted by landslide debris. We show that landslide exposure and hazard vary from negligible to high, in relative terms, over lateral distances of as little as 10s of m. Our findings hold important implications for guiding reconstruction and for taking steps to reduce the risks from future earthquakes.
dc.identifier.citationArrell K, Rosser N, Kincey M, Robinson T, Horton P, Densmore A, Oven K, Shrestha R, Pujara DS (2024). The dynamic threat from landslides following large continental earthquakes. PLoS One. 19(8).
dc.identifier.doihttp://doi.org/10.1371/journal.pone.0308444
dc.identifier.issn1932-6203
dc.identifier.urihttps://hdl.handle.net/10092/107451
dc.rightsAll rights reserved unless otherwise stated
dc.rights.urihttp://hdl.handle.net/10092/17651
dc.subject.anzsrc37 - Earth sciences::3709 - Physical geography and environmental geoscience::370903 - Natural hazards
dc.subject.anzsrc41 - Environmental sciences::4106 - Soil sciences
dc.titleThe dynamic threat from landslides following large continental earthquakes
dc.typeJournal Article
uc.collegeFaculty of Science
uc.departmentSchool of Earth and Environment
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Arrell _etal_2024_PLoS-ONE_Nepal_Temporal_LS_Risk.pdf
Size:
10.46 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.17 KB
Format:
Plain Text
Description: