Constraining the uncertainty associated with sea salt aerosol parametrisations in global models using nudged AMIP simulations

dc.contributor.authorVenugopal , Abhijith U.
dc.contributor.authorRevell, Laura
dc.contributor.authorMorgenstern , Olaf
dc.contributor.authorBhatti , Yusuf A.
dc.contributor.authorWilliams , Jonny
dc.contributor.authorEdkins , Nick
dc.contributor.authorHardacre, Catherine
dc.contributor.authorJones, Anthony
dc.date.accessioned2025-03-26T21:09:32Z
dc.date.available2025-03-26T21:09:32Z
dc.date.issued2023
dc.description.abstractSea salt is the largest source of natural aerosol in the atmosphere by mass. Formed when ocean waves break and bubbles burst, sea salt aerosols (SSA) influence Earth's climate via direct and indirect processes. Models participating in the sixth Coupled Model Intercomparison project (CMIP6) demonstrate a negative effective radiative forcing (ERF) when SSA emissions are doubled. However, the magnitude of the ERF ranges widely from − 0.35 ± 0.04 W m− 2 to − 2.28 ± 0.07 W m− 2, with the largest difference over the Southern Ocean. Differences in the response to doubled SSA emissions arise from model uncertainty (e.g., individual model physics, aerosol size distribution) and parameterization uncertainty (e.g., how SSA is produced in the model). Here, we perform single‐model experiments with UKESM1‐AMIP incorporating all of the SSA parameterizations used by the current generation of CMIP6 Earth system models (ESMs). Using a fixed SSA size distribution, our experiments show that the parameterization uncertainty causes large inter‐model diversity in SSA emissions in the models, particularly over the tropics and the Southern Ocean. The choice of parameterization influences the ambient aerosol size distribution, cloud condensation nuclei and cloud droplet number concentrations, and therefore direct and indirect radiative forcing. We recommend that modeling groups evaluate their SSA parameterizations and update them where necessary in preparation for future model intercomparison activities.
dc.identifier.citationVenugopal A, Revell L, Morgenstern O, Bhatti Y, Williams J, Edkins N (2023). Constraining the uncertainty associated with sea salt aerosol parametrisations in global models using nudged AMIP simulations. Malaga, Spain: European Aerosol Conference. 03/09/2023. Journal of Geophysical Research: Atmospheres. 130. 2.
dc.identifier.doihttp://doi.org/10.1029/2024jd041643
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/10092/107967
dc.publisherAmerican Geophysical Union (AGU)
dc.rightsAll rights reserved unless otherwise stated
dc.rights.urihttp://hdl.handle.net/10092/17651
dc.subject.anzsrc37 - Earth sciences::3701 - Atmospheric sciences::370103 - Atmospheric aerosols
dc.subject.anzsrc37 - Earth sciences::3708 - Oceanography::370803 - Physical oceanography
dc.titleConstraining the uncertainty associated with sea salt aerosol parametrisations in global models using nudged AMIP simulations
dc.typeConference Contributions - Other
uc.collegeFaculty of Science
uc.departmentSchool of Physical & Chemical Sciences
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Venugopal et al 2025.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.17 KB
Format:
Plain Text
Description: