Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling

Type of content
Journal Article
Thesis discipline
Degree name
Publisher
University of Canterbury. Biological Sciences
University of Canterbury. Biomolecular Interaction Centre
Journal Title
Journal ISSN
Volume Title
Language
Date
2014
Authors
Lindgreen, S.
Umu, S.U.
Lai, A.S-W.
Eldai, H.
Liu, W.
McGimpsey, S.
Wheeler, N.
Biggs, P.J.
Thomson, N.R.
Barquist, L.
Abstract

Noncoding RNAs are increasingly recognized as integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the diffi culty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.

Description
Citation
Lindgreen, S., Umu, S.U., Lai, A.S-W., Eldai, H., Liu, W., McGimpsey, S., Wheeler, N., Biggs, P.J., Thomson, N.R., Barquist, L., Poole, A.M., Gardner, P.P. (2014) Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling. PLoS Computational Biology, 10(10), pp. e1003907.
Keywords
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Fields of Research::31 - Biological sciences::3107 - Microbiology::310704 - Microbial genetics
Fields of Research::31 - Biological sciences::3105 - Genetics::310509 - Genomics
Fields of Research::31 - Biological sciences::3104 - Evolutionary biology::310410 - Phylogeny and comparative analysis
Rights