University of Canterbury Home
    • Admin
    UC Research Repository
    UC Library
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    1. UC Home
    2. Library
    3. UC Research Repository
    4. Faculty of Science | Te Kaupeka Pūtaiao
    5. Science: Journal Articles
    6. View Item
    1. UC Home
    2.  > 
    3. Library
    4.  > 
    5. UC Research Repository
    6.  > 
    7. Faculty of Science | Te Kaupeka Pūtaiao
    8.  > 
    9. Science: Journal Articles
    10.  > 
    11. View Item

    Impacts of Mt Pinatubo volcanic aerosol on the tropical stratosphere in chemistry-climate model simulations using CCMI and CMIP6 stratospheric aerosol data (2017)

    Thumbnail
    View/Open
    Published version (2.806Mb)
    Type of Content
    Journal Article
    UC Permalink
    http://hdl.handle.net/10092/15751
    
    Publisher's DOI/URI
    https://doi.org/10.5194/acp-17-13139-2017
    
    ISSN
    1680-7316
    1680-7324
    Collections
    • Science: Journal Articles [1117]
    Authors
    Revell LE
    Stenke A
    Luo B
    Kremser S
    Rozanov E
    Sukhodolov T
    Peter T
    show all
    Abstract

    To simulate the impacts of volcanic eruptions on the stratosphere, chemistry–climate models that do not include an online aerosol module require temporally and spatially resolved aerosol size parameters for heterogeneous chemistry and aerosol radiative properties as a function of wavelength. For phase 1 of the Chemistry-Climate Model Initiative (CCMI-1) and, later, for phase 6 of the Coupled Model Intercomparison Project (CMIP6) two such stratospheric aerosol data sets were compiled, whose functional capability and representativeness are compared here. For CCMI-1, the “SAGE-4λ” data set was compiled, which hinges on the measurements at four wavelengths of the SAGE (Stratospheric Aerosol and Gas Experiment) II satellite instrument and uses ground-based lidar measurements for gap-filling immediately after the 1991 Mt Pinatubo eruption, when the stratosphere was too optically opaque for SAGE II. For CMIP6, the new “SAGE-3λ” data set was compiled, which excludes the least reliable SAGE II wavelength and uses measurements from CLAES (Cryogenic Limb Array Etalon Spectrometer) on UARS, the Upper Atmosphere Research Satellite, for gap-filling following the Mt Pinatubo eruption instead of ground-based lidars. Here, we performed SOCOLv3 (Solar Climate Ozone Links version 3) chemistry–climate model simulations of the recent past (1986–2005) to investigate the impact of the Mt Pinatubo eruption in 1991 on stratospheric temperature and ozone and how this response differs depending on which aerosol data set is applied. The use of SAGE-4λ results in heating and ozone loss being overestimated in the tropical lower stratosphere compared to observations in the post-eruption period by approximately 3 K and 0.2 ppmv, respectively. However, less heating occurs in the model simulations based on SAGE-3λ, because the improved gap-filling procedures after the eruption lead to less aerosol loading in the tropical lower stratosphere. As a result, simulated tropical temperature anomalies in the model simulations based on SAGE-3λ for CMIP6 are in excellent agreement with MERRA and ERA-Interim reanalyses in the post-eruption period. Less heating in the simulations with SAGE-3λ means that the rate of tropical upwelling does not strengthen as much as it does in the simulations with SAGE-4λ, which limits dynamical uplift of ozone and therefore provides more time for ozone to accumulate in tropical mid-stratospheric air. Ozone loss following the Mt Pinatubo eruption is overestimated by up to 0.1 ppmv in the model simulations based on SAGE-3λ, which is a better agreement with observations than in the simulations based on SAGE-4λ. Overall, the CMIP6 stratospheric aerosol data set, SAGE-3λ, allows SOCOLv3 to more accurately simulate the post-Pinatubo eruption period.

    ANZSRC Fields of Research
    37 - Earth sciences::3701 - Atmospheric sciences::370103 - Atmospheric aerosols
    04 - Earth Sciences::0401 - Atmospheric Sciences::040108 - Tropospheric and Stratospheric Physics
    Rights
    © Author(s) 2017. This work is distributed under the Creative Commons Attribution 4.0 License.

    Related items

    Showing items related by title, author, creator and subject.

    • Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations 

      Orbe C; Yang H; Waugh DW; Zeng G; Morgenstern O; Kinnison DE; Lamarque J-F; Tilmes S; Plummer DA; Scinocca JF; Josse B; Marecal V; Jockel P; Oman LD; Strahan SE; Deushi M; Tanaka TY; Yoshida K; Akiyoshi H; Yamashita Y; Stenke A; Revell LE; Sukhodolov T; Rozanov E; Pitari G; Visioni D; Stone KA; Schofield R; Banerjee A (2018)
      Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future) changes in atmospheric composition. Here we show that there are large differences in ...
    • Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models 

      Son S-W; Han B-R; Garfinkel CI; Kim S-Y; Park R; Abraham NL; Akiyoshi H; Archibald AT; Butchart N; Chipperfield M; Dameris M; Deushi M; Dhomse S; Hardiman SC; Jockel P; Kinnison D; Michou M; Morgenstern O; O'Connor FM; Oman L; Plummer D; Pozzer A; Revell LE; Rozanov E; Stenke A; Stone K; Tilmes S; Yamashita Y; Zeng G (2018)
      The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative ...
    • Attribution of Chemistry-Climate Model Initiative (CCMI) ozone radiative flux bias from satellites 

      Kuai L; Bowman KW; Miyazaki K; Deushi M; Revell L; Rozanov E; Paulot F; Strode S; Conley A; Lamarque J-F; Jöckel P; Plummer DA; Oman LD; Worden H; Kulawik S; Paynter D; Stenke A; Kunze M (Copernicus GmbH, 2020)
      The top-of-atmosphere (TOA) outgoing longwave flux over the 9.6 µm ozone band is a fundamental quantity for understanding chemistry–climate coupling. However, observed TOA fluxes are hard to estimate as they exhibit c ...
    Advanced Search

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThesis DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsThesis Discipline

    Statistics

    View Usage Statistics
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer