HST spectrum and timing of the ultra-compact X-ray binary candidate 47 Tuc X9

Type of content
Journal Article
Thesis discipline
Degree name
Publisher
Journal Title
Journal ISSN
Volume Title
Language
Date
2017
Authors
Tudor V
Miller-Jones JCA
Knigge C
Maccarone TJ
Tauris TM
Bahramian A
Chomiuk L
Heinke CO
Sivakoff GR
Strader J
Abstract

To confirm the nature of the donor star in the ultra-compact X-ray binary candidate 47 Tuc X9, we obtained optical spectra (3,000-10,000 Å) with the Hubble Space Telescope / Space Telescope Imaging Spectrograph. We find no strong emission or absorption features in the spectrum of X9. In particular, we place 3σ upper limits on the Hα and He II λ4686 emission line equivalent widths −EWHα <≈ 14 Å and −EWHeII <≈ 9 Å, respectively. This is much lower than seen for typical X-ray binaries at a similar X-ray luminosity (which, for L2−10 keV ≈ 10³³ - 10³⁴ erg s−¹ is typically −EWHα ∼ 50 Å). This supports our previous suggestion (by Bahramian et al.) of an H-poor donor in X9. We perform timing analysis on archival far-ultraviolet, V and I-band data to search for periodicities. In the optical bands we recover the seven-day superorbital period initially discovered in X-rays, but we do not recover the orbital period. In the far-ultraviolet we find evidence for a 27.2 min period (shorter than the 28.2 min period seen in X-rays). We find that either a neutron star or black hole could explain the observed properties of X9. We also perform binary evolution calculations, showing that the formation of an initial black hole / He-star binary early in the life of a globular cluster could evolve into a present-day system such as X9 (should the compact object in this system indeed be a black hole) via mass-transfer driven by gravitational wave radiation.

Description
Citation
Keywords
astro-ph.HE, astro-ph.SR, accretion - stars, black holes - stars, neutron - X-rays: binaries
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Fields of Research::51 - Physical sciences::5101 - Astronomical sciences::510109 - Stellar astronomy and planetary systems
Field of Research::02 - Physical Sciences::0201 - Astronomical and Space Sciences::020106 - High Energy Astrophysics; Cosmic Rays
Rights