• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    Probabilistic seismic design and assessment methodologies for the new generation of damage resistant structures

    Thumbnail
    View/Open
    thesis_fulltext.pdf (4.351Mb)
    Author
    Robertson, Kathryn Louise
    Date
    2005
    Permanent Link
    http://hdl.handle.net/10092/1093
    Thesis Discipline
    Civil Engineering
    Degree Grantor
    University of Canterbury
    Degree Level
    Masters
    Degree Name
    Master of Engineering

    Following the evolution of a damage avoidance design (DAD) frame system, with rocking beam-column joints, at the University of Canterbury, analytical studies are carried out to evaluate the performance of proposed structures, and verify the proposed design methodology. A probabilistic seismic risk assessment methodology is proposed, from which the expected annualised financial loss (EAL) of a structure can be calculated. EAL provides a consistent basis for comparison of DAD frame systems with state-of-practice ductile monolithic construction. Such comparison illustrates the superior performance of DAD frame systems. The proposed probabilistic seismic assessment methodology requires the response of the structure to be evaluated over a range of seismic intensities. This can be achieved by carrying out an incremental dynamic analysis, explicitly considering seismic randomness and uncertainty; or from a pushover analysis, and assuming an appropriate value of the dispersion. By combining this information with the seismic hazard, probabilistic response curves can be derived, which when combined with information about damage states for the particular structure, can be transformed into 'resilience curves'. Integration of information regarding the financial loss occurring due to each of the damage states, results in an estimate of EAL.

    Subjects
    structural analysis
     
    reinforced concrete structures
    Collections
    • Engineering: Theses and Dissertations [2155]
    Rights
    http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us