University of Canterbury Home
    • Admin
    UC Research Repository
    UC Library
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    1. UC Home
    2. Library
    3. UC Research Repository
    4. Faculty of Engineering | Te Kaupeka Pūhanga
    5. Engineering: Theses and Dissertations
    6. View Item
    1. UC Home
    2.  > 
    3. Library
    4.  > 
    5. UC Research Repository
    6.  > 
    7. Faculty of Engineering | Te Kaupeka Pūhanga
    8.  > 
    9. Engineering: Theses and Dissertations
    10.  > 
    11. View Item

    Precision of pose estimation using corner detection. (2022)

    Thumbnail
    View/Open
    Edwards, Matthew_Final PhD Thesis.pdf (29.70Mb)
    Type of Content
    Theses / Dissertations
    UC Permalink
    https://hdl.handle.net/10092/103497
    http://dx.doi.org/10.26021/12598
    
    Thesis Discipline
    Electrical Engineering
    Degree Name
    Doctor of Philosophy
    Language
    English
    Collections
    • Engineering: Theses and Dissertations [2949]
    Authors
    Edwards, Matthew J.
    show all
    Abstract

    The aim of this research was to develop a method for recording ground truth with performance comparable to motion capture, in order to produce high-quality outdoor visual odometry datasets. A novel fiducial marker system was developed, featuring a smooth pattern which is used in an optimisation process to produce refined estimates. On average, precision was increased by 27 % compared to traditional fiducial markers. To investigate the limit of the increase in pose estimation precision possible with this method, the marker was modelled as a dense grid of checkerboard corners and the Cramér-Rao lower bound of the corresponding estimator was derived symbolically. This gave a lower bound for the variance of a pose estimated from a given image. The model was validated in simulation and using real images.

    The distribution of the error for a common checkerboard corner detector was evaluated to determine whether modelling it using independent and identically distributed Gaussian random variables was valid. In a series of experiments where images were collected from a tripod, a robot arm, and a slider-type electric actuator, it was determined that the error is usually normally distributed but its variance depends on the amount of lens blur in the image, and that any amount of motion blur can produce correlated results. Furthermore, in images with little blur (less than approximately one pixel) the estimates are biased, and both the bias and the variance are dependent on the location of the corner within a pixel. In real images, the standard deviation of the noise was around 80 % larger at the pixel edges than at the centre. The intensity noise from the image sensor was also found not to be identically distributed: in one camera, the standard deviation of the intensity noise varied by a factor of approximately four within the region around a checkerboard corner.

    This research suggests that it is possible to significantly increase fiducial marker pose estimation precision, presents a novel approach for predicting and evaluating pose estimation precision, and highlights sources of error not considered in prior work.

    Rights
    All Right Reserved
    https://canterbury.libguides.com/rights/theses

    Related items

    Showing items related by title, author, creator and subject.

    • Pose estimation for feedback control in a snake robot. 

      Scott, Callum (University of Canterbury, 2017)
      This thesis presents a pose estimation algorithm for a snake robot as a step towards creating a closed-loop controlled snake robot. The University of Canterbury snake robot is being developed for use in urban search and ...
    • 3D pose estimation in videos using convolutional neural network. 

      Shangguan, Huyuan (University of Canterbury, 2019)
      This thesis proposes, develops and evaluates different convolutional neural network based methods for 3D single-person pose estimation in RGB video. The research goals are achieved by studying image processing methods that ...
    • Atomically-precise gold and silver electrocatalysts for superior nitrate reduction and detection. 

      Kirk, Ryan Maxwell (University of Canterbury, 2018)
      This study investigates the electrocatalytic performance of chemically-synthesised gold and silver nanoclusters for nitrate reduction, with the intent of designing an accurate, sensitive and robust electrochemical nitrate ...
    Advanced Search

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThesis DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsThesis Discipline

    Statistics

    View Usage Statistics
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer