The Spatial and Temporal Influence of Cloud Cover on Satellite-Based Emergency Mapping of Earthquake Disasters

Type of content
Journal Article
Thesis discipline
Degree name
Publisher
Springer Science and Business Media LLC
Journal Title
Journal ISSN
Volume Title
Language
eng
Date
2019
Authors
Rosser N
Walters RJ
Robinson, Tom
Abstract

The ability to rapidly access optical satellite imagery is now an intrinsic component of managing the disaster response that follows a major earthquake. These images provide synoptic data on the impacts, extent, and intensity of damage, which is essential for mitigating further losses by feeding into the response coordination. However, whilst the efficiency of the response can be hampered when cloud cover limits image availability, spatio-temporal variations in cloud cover have never been considered as part of the design of effective disaster mapping. Here we show how annual variations in cloud cover may affect our capacity to respond rapidly throughout the year and consequently contribute to overall earthquake risk. We find that on a global scale when accounting for cloud, the worst time of year for an earthquake disaster is between June and August. During these months, 40% of the global population at risk from earthquakes are obscured from optical satellite view for >3 consecutive days. Southeastern Asia is particularly strongly affected, accounting for the majority of the population at risk from earthquakes that could be obscured by cloud in every month. Our results demonstrate the importance of the timing of earthquakes in terms of our capacity to respond effectively, highlighting the need for more intelligent design of disaster response that is not overly reliant on optical satellite imagery.

Description
Citation
Robinson TR, Rosser N, Walters RJ (2019). The Spatial and Temporal Influence of Cloud Cover on Satellite-Based Emergency Mapping of Earthquake Disasters. Scientific Reports. 9(1). 12455-.
Keywords
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Fields of Research::40 - Engineering::4010 - Engineering practice and education::401005 - Risk engineering
Fields of Research::40 - Engineering::4005 - Civil engineering::400506 - Earthquake engineering
Fields of Research::40 - Engineering::4013 - Geomatic engineering::401304 - Photogrammetry and remote sensing
Fields of Research::40 - Engineering::4013 - Geomatic engineering::401302 - Geospatial information systems and geospatial data modelling
Rights
© The Author(s) 2019. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.