Preliminary observations of the sequence of damage in excised human juvenile cranial bone at speeds equivalent to falls from 1.6 m

Type of content
Journal Article
Thesis discipline
Degree name
Publisher
Springer Science and Business Media LLC
Journal Title
Journal ISSN
Volume Title
Language
en
Date
2020
Authors
Brooks T
Zwirner J
Hammer N
Ondruschka B
Jermy M
Abstract

There is much debate within the forensic community around the indications that suggest a head injury sustained by a child resulted from abusive head trauma, rather than from accidental causes, especially when a fall from low height is the explanation given by a caregiver. To better understand this problem, finite element models of the paediatric head have been and continue to be developed. These models require material models that fit the behaviour of paediatric head tissues under dynamic loading conditions. Currently, the highest loading rate for which skull data exists is 2.81 ms-1 19 . This study improves on this by providing preliminary experimental data for a loading rate of 5.65 ± 0.14 ms-1 20 , equivalent to a fall of 1.6 m. Eleven specimens of paediatric cranial bone (frontal, occipital, parietal and temporal) from seven donors (age range 3 weeks – 18 years) were tested in three-point bending with an impactor of radius 2 mm. It was found that prompt brittle fracture with virtually no bending occurring in all specimens but those aged 3 weeks old, where bending preceded brittle fracture. The maximum impact force increased with age (or thickness) and was higher in occipital bone. Energy absorbed to failure followed a similar trend, with values 0.11 and 0.35 mJ/mm3 for age three-weeks, agreeing with previously published static tests, increasing with age up to 9 mJ/mm3 for 18-year-old occipital bone. The preliminary data provided here can help analysts improve pediatric head finite element models that can be used to provide better predictions of the nature of head injuries from both a biomechanical and forensic point of view.

Description
Citation
Brooks T, Zwirner J, Hammer N, Ondruschka B, Jermy M Preliminary observations of the sequence of damage in excised human juvenile cranial bone at speeds equivalent to falls from 1.6 m. International Journal of Legal Medicine.
Keywords
pediatric, children, impact, biomechanics, head injury
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
0399 Other Chemical Sciences
0699 Other Biological Sciences
1103 Clinical Sciences
Fields of Research::32 - Biomedical and clinical sciences::3213 - Paediatrics::321302 - Infant and child health
Fields of Research::32 - Biomedical and clinical sciences::3208 - Medical physiology::320802 - Human biophysics
Fields of Research::40 - Engineering::4003 - Biomedical engineering::400303 - Biomechanical engineering
Rights
All rights reserved unless otherwise stated