Development of Clinically-Viable Applications of MR Elastography

dc.contributor.authorFlewellen, James Lewisen
dc.date.accessioned2009-01-08T23:40:59Z
dc.date.available2009-01-08T23:40:59Z
dc.date.issued2008en
dc.description.abstractMagnetic Resonance Elastography is a method of imaging the elasticity of soft tissues through measurement of small motions induced into a sample. It shows great promise in the detection of a wide variety of pathologies, especially tumours. An imaging protocol was developed to acquire MR elastography data for use in a clinical setting. A 3D gradient echo sequence was modified to allow for the detection of harmonic motion and tested on silicone phantoms and ex-vivo muscle and brain samples. The time for acquiring a high resolution, quantitative dataset of 3D motions was about 45 minutes. Our imaging method included motion encoding along all three coordinate axes and at several time points along the motion cycle. This time could be easily be reduced by more than half for future clinical use, while still retaining full quantitative data. A modified EPI sequence shows promise for even faster acquisition. The ability to detect the mechanical anisotropy of brain and muscle tissue in ex-vivo samples was also investigated. Initial results from the muscle data indicate a change in shear wavelength is observed for actuation along orthogonal axes. This is a strong indicator of anisotropy detection. Further work needs to be done to improve results from the brain sample as preliminary results are inconclusive.en
dc.identifier.urihttp://hdl.handle.net/10092/1980
dc.identifier.urihttp://dx.doi.org/10.26021/8989
dc.language.isoen
dc.publisherUniversity of Canterbury. Physics and Astronomyen
dc.relation.isreferencedbyNZCUen
dc.rightsCopyright James Lewis Flewellenen
dc.rights.urihttps://canterbury.libguides.com/rights/thesesen
dc.subjectelastographyen
dc.subjectmagnetic resonanceen
dc.subjectMRIen
dc.subjectMREen
dc.subjecttissue anisotropyen
dc.subjecttumouren
dc.subjectbreast canceren
dc.subjectgradient echoen
dc.subjectpulse sequenceen
dc.subjectfinite elementen
dc.subjectphantom manufactureen
dc.titleDevelopment of Clinically-Viable Applications of MR Elastographyen
dc.typeTheses / Dissertations
thesis.degree.disciplinePhysicsen
thesis.degree.grantorUniversity of Canterburyen
thesis.degree.levelMastersen
thesis.degree.nameMaster of Scienceen
uc.bibnumber1118542en
uc.collegeFaculty of Scienceen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis_fulltext.pdf
Size:
17.18 MB
Format:
Adobe Portable Document Format