Structural Characterisation of Proteins from the Peroxiredoxin Family

dc.contributor.authorPhillips, Amy
dc.date.accessioned2014-07-14T01:08:04Z
dc.date.available2017-05-04T20:12:56Z
dc.date.issued2014en
dc.description.abstractThe oligomerisation of protein subunits is an area of much research interest, in particular the relationship to protein function. In the last decade, the potential to control the interactions involved in order to design constructs with tuneable oligomeric properties in vitro has been pursued. The subject of this thesis is the quaternary structure of members of the peroxiredoxin family, which have been seen to assume an intriguing array of organisations. Human Peroxiredoxin 3 (HsPrx3) and Mycobacterium tuberculosis alkyl hydroperoxide reductase (MtAhpE) catalyse the detoxification of reactive species, preferentially hydrogen peroxide and peroxynitrite respectively, and form an essential part of the antioxidant defence system. As well as their biomedical interest, the ability of these proteins to form organised supramolecular assemblies makes them of interest in protein nanotechnology. The work described focusses on the elucidation of the quaternary structure of both proteins, resolving previous debates about their oligomeric state. The factors influencing oligomerisation were examined through biophysical characterisation in different conditions, using solution techniques including chromatography, light and X-ray scattering, and electron microscopy. The insight gained, along with analysis of the protein-protein interfaces, was used to alter the quaternary structure through site-directed mutagenesis. This resulted in a level of control over the protein’s oligomeric state to be achieved, and novel structures with potential applications in nanotechnology to be generated. The activity of the non-native structures was also assessed, to begin to unravel the relationship between peroxiredoxin quaternary structure to enzyme activity. The formation and structure of very high molecular weight complexes of HsPrx3 were explored using electron microscopy. The first high resolution structural data for such a complex is presented, analysis of which allowed the theory of an assembly mechanism to be proposed.en
dc.identifier.urihttp://hdl.handle.net/10092/9371
dc.identifier.urihttp://dx.doi.org/10.26021/7704
dc.language.isoen
dc.publisherUniversity of Canterbury. Biological Sciencesen
dc.relation.isreferencedbyNZCUen
dc.rightsCopyright Amy Phillipsen
dc.rights.urihttps://canterbury.libguides.com/rights/thesesen
dc.subjectPeroxiredoxinen
dc.subjectprotein engineeringen
dc.subjecttransmission electron microscopyen
dc.subjectcryo-electron microscopyen
dc.subjectnanotubesen
dc.subjectquaternary structureen
dc.subjectantioxidanten
dc.subjectbionanotechnologyen
dc.titleStructural Characterisation of Proteins from the Peroxiredoxin Familyen
dc.typeTheses / Dissertations
thesis.degree.disciplineBiological Sciences
thesis.degree.grantorUniversity of Canterburyen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen
uc.bibnumber2011369
uc.collegeFaculty of Scienceen
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
thesis_fulltext.pdf
Size:
11.67 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Phillips_Use_of_thesis_form.pdf
Size:
57.73 KB
Format:
Adobe Portable Document Format