Application of the 3ω method to micro- and nano-scale thermal systems.

dc.contributor.authorMeffan, Claude
dc.date.accessioned2019-09-16T01:59:17Z
dc.date.available2019-09-16T01:59:17Z
dc.date.issued2019en
dc.description.abstractThis thesis is structured into five main chapters, as well as the introduction, literature review, and conclusions. As previously mentioned, this thesis is divided into two distinct fields, and is linked by the 3ω method. To clarify, a pictorial representation of the thesis structure is shown in Figure 1.1. The first chapter discusses the 3ω method and the steps that were taken to establish the technique at the University of Canterbury, New Zealand. The second chapter applies the “classical” 3ω method to a composite pressed nanoparticle material. Three different blends of nanoparticle materials were measured and compared to literature values for similar systems. The third chapter discusses a highly structured nanoparticle- polymer superlattice. The thermal conductivity of this thin film is investigated using the differential 3ω method, and compared to the raw constituent materials. The fourth chapter adapts the 3ω method for use in a microfluidic channel and uses it to measure fluid velocity with spatial resolution. The fifth chapter uses the microfluidic device to assess the growth of a species of oomycete, a type of water moulds related to species currently causing widespread damage to New Zealand’s ecosystem.en
dc.identifier.urihttp://hdl.handle.net/10092/17127
dc.identifier.urihttp://dx.doi.org/10.26021/2393
dc.languageEnglish
dc.language.isoen
dc.publisherUniversity of Canterburyen
dc.rightsAll Right Reserveden
dc.rights.urihttps://canterbury.libguides.com/rights/thesesen
dc.titleApplication of the 3ω method to micro- and nano-scale thermal systems.en
dc.typeTheses / Dissertationsen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorUniversity of Canterburyen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen
uc.bibnumber2782930
uc.collegeFaculty of Engineeringen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Meffan, Claude_Final PhD Thesis.pdf
Size:
3.74 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: