Experimental and financial investigations into the further development of Damage Avoidance Design

Type of content
Theses / Dissertations
Publisher's DOI/URI
Thesis discipline
Civil Engineering
Degree name
Master of Engineering
Publisher
University of Canterbury. Civil Engineering
Journal Title
Journal ISSN
Volume Title
Language
Date
2007
Authors
Solberg, Kevin Mark
Abstract

Multiple experimental and computational tests are performed on precast concrete structures designed for damage avoidance. These structures accommodate non-linear behaviour by rocking at specially detailed connections. Unbonded prestress is employed to provide a restoring force and supplemental devices are used to dissipate energy. Tests are performed on a 30 percent scale bridge pier and an 80 percent scale 3D beam-column joint subassembly. Several detailing strategies are developed and tested. Straight and draped tendon profiles are considered. Supplemental energy dissipation is provided by yielding mild steel devices or lead-extrusion dampers. The lead-extrusion dampers are tested both externally and internally. Detailing at the joint region is refined in an effort to provide a cost-effective and simple solution. A closure pour is considered to simply the construction process. Results indicate it is possible to eliminate virtually all damage at the beam-column joint with minor increased cost from steel armouring. The lead-extrusion damper is shown to be 'resetable', and therefore would not have to be replaced following a seismic event. Two seismic financial risk methodologies are developed to investigate the enhanced performance inherent to ductile jointed structures. A rapid method is introduced which simplifies the intensive computational effort necessary to perform loss studies. A distribution-free computational method is also examined. The methods are demonstrated with a case study of bridge piers designed to different seismic design codes and a bridge designed for damage avoidance. The bridge pier designed for damage avoidance is shown to have an expected annual loss of approximately 25 percent that of the conventional ductile piers.

Description
Citation
Keywords
earthquake engineering, damage avoidance design, precast concrete, performance-based earthquake engineering
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Rights
Copyright Kevin Mark Solberg