Commuting distance and transport energy resilience: quantifying human commuting distribution to explore low carbon potentials with transition projects

dc.contributor.authorBai M
dc.contributor.authorKrumdieck SP
dc.date.accessioned2017-07-28T04:57:27Z
dc.date.available2017-07-28T04:57:27Z
dc.date.issued2017en
dc.date.updated2017-06-25T20:26:29Z
dc.description.abstractHuman commuting activity plays a significant role in understanding urban transport systems. This paper proposes a novel approach to modelling commuting distance distribution in a concise way. Having studied a small number of training data in New Zealand, it is found that the human commuting distance distribution can be quantified as a simple CDF exponential function with only one parameter to be determined, and the parameter is mainly dependent on the average distance to employment catchment. Besides its good predictability for test data, a Monte Carlo method to calculate the commuting VKT was introduced in the course of validation with considerable approximation to the real VKT observation. Two case studies on how to apply this model are presented to manifest its strength in exploring low carbon potentials in urban transport system, assuming that commuters could cycle to their workplaces in short distance, and an efficient commuting bus line was developed to replace the car driving in long distance. This model is convenient in simulating and predicting commuting distance distribution with limited data availability, and provides a quantitative foundation for analyzing urban transport resilience and emission mitigation.en
dc.identifier.citationBai M, Krumdieck SP (2017). Commuting distance and transport energy resilience: quantifying human commuting distribution to explore low carbon potentials with transition projects. Hamilton, New Zealand: IPENZ Transport Group National Conference. 29/3/2017-31/3/2017.en
dc.identifier.urihttp://hdl.handle.net/10092/13735
dc.language.isoen
dc.subject.anzsrcField of Research::12 - Built Environment and Design::1205 - Urban and Regional Planning::120506 - Transport Planningen
dc.subject.anzsrcFields of Research::33 - Built environment and design::3304 - Urban and regional planning::330411 - Urban designen
dc.titleCommuting distance and transport energy resilience: quantifying human commuting distribution to explore low carbon potentials with transition projectsen
dc.typeConference Contributions - Otheren
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ming IPENZ 2017.pdf
Size:
5.23 MB
Format:
Adobe Portable Document Format