MARS-MD: rejection based image domain material decomposition
dc.contributor.author | Bateman, C.J. | |
dc.contributor.author | Knight, D. | |
dc.contributor.author | Brandwacht, B. | |
dc.contributor.author | Mahon, J.M. | |
dc.contributor.author | Healy, J. | |
dc.contributor.author | Panta, R. | |
dc.contributor.author | Aamir, R. | |
dc.contributor.author | Rajendran, K. | |
dc.contributor.author | Moghiseh, M. | |
dc.contributor.author | Ramyar, M. | |
dc.contributor.author | Rundle, D. | |
dc.contributor.author | Bennett, J. | |
dc.contributor.author | Ruiter, N.D. | |
dc.contributor.author | Smithies, D. | |
dc.contributor.author | Bell, S.T. | |
dc.contributor.author | Doesburg, R. | |
dc.contributor.author | Chernoglazov, A. | |
dc.contributor.author | Mandalika, V.B.H. | |
dc.contributor.author | Walsh, M. | |
dc.contributor.author | Shamshad, M. | |
dc.contributor.author | Anjomrouz, M. | |
dc.contributor.author | Atharifard, A. | |
dc.contributor.author | Broeke, L.V. | |
dc.contributor.author | Bheesette, S. | |
dc.contributor.author | Kirkbride, T. | |
dc.contributor.author | Anderson, N.G. | |
dc.contributor.author | Gieseg, Steven | |
dc.contributor.author | Woodfield, T. | |
dc.contributor.author | Renaud, P.F. | |
dc.contributor.author | Butler, A.P.H. | |
dc.contributor.author | Butler, P.H. | |
dc.date.accessioned | 2018-07-13T00:40:51Z | |
dc.date.available | 2018-07-13T00:40:51Z | |
dc.date.issued | 2018 | en |
dc.date.updated | 2018-04-26T23:17:45Z | |
dc.description.abstract | This paper outlines image domain material decomposition algorithms that have been routinely used in MARS spectral CT systems. These algorithms (known collectively as MARS-MD) are based on a pragmatic heuristic for solving the under-determined problem where there are more materials than energy bins. This heuristic contains three parts: (1) splitting the problem into a number of possible sub-problems, each containing fewer materials; (2) solving each sub-problem; and (3) applying rejection criteria to eliminate all but one sub-problem's solution. An advantage of this process is that different constraints can be applied to each sub-problem if necessary. In addition, the result of this process is that solutions will be sparse in the material domain, which reduces crossover of signal between material images. Two algorithms based on this process are presented: the Segmentation variant, which uses segmented material classes to define each sub-problem; and the Angular Rejection variant, which defines the rejection criteria using the angle between reconstructed attenuation vectors. | en |
dc.identifier.uri | http://hdl.handle.net/10092/15667 | |
dc.language.iso | en | |
dc.subject | physics.med-ph | en |
dc.subject | Computerized Tomography | en |
dc.subject | Data processing methods | en |
dc.subject.anzsrc | Fields of Research::51 - Physical sciences::5105 - Medical and biological physics::510502 - Medical physics | en |
dc.subject.anzsrc | Field of Research::11 - Medical and Health Sciences::1103 - Clinical Sciences::110320 - Radiology and Organ Imaging | en |
dc.title | MARS-MD: rejection based image domain material decomposition | en |
dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1802.05366v1.pdf
- Size:
- 2.38 MB
- Format:
- Adobe Portable Document Format
- Description:
- Submitted version