Identification of cost-effective retrofit and/or rehabilitation strategies for steel buildings

dc.contributor.authorArifin, Fransiscus Asisi
dc.date.accessioned2018-02-11T19:37:03Z
dc.date.available2018-02-11T19:37:03Z
dc.date.issued2017en
dc.description.abstractRecently developed performance-based earthquake engineering framework, such as one provided by PEER (Deierlein et al. 2003), assist in the quantification in terms of performance such as casualty, monetary losses and downtime. This opens up the opportunity to identify cost-effective retrofit/rehabilitation strategies by comparing upfront costs associated with retrofit with the repair costs that can be expected over time. This loss assessment can be strengthened by learning from recent earthquakes, such as the 2010 Canterbury and 2016 Kaikoura earthquakes. In order to investigate which types of retrofit/rehabilitation strategies may be most cost-effective, a case study building was chosen for this research. The Pacific Tower, a 22-storey EBF apartment located within the Christchurch central business district (CBD), was damaged and repaired during the 2010 Canterbury earthquake series. As such, by taking hazard levels accordingly (i.e. to correspond to the Christchurch CBD), modelling and analysing the structure, and considering the vulnerability and repair costs of its different components, it is possible to predict the expected losses of the aforementioned building. Using this information, cost-effective retrofit/rehabilitation strategy can be determined. This research found that more often than not, it would be beneficial to improve the performance of valuable non-structural components, such as partitions. Although it is true that improving such elements will increase the initial costs, over time, the benefits gained from reduced losses should be expected to overcome the initial costs. Aftershocks do increase the predicted losses of a building even in lower intensities due to the fact that non-structural components can get damaged at such low intensities. By comparing losses computed with and without consideration of aftershocks for a range of historical earthquakes, it was found that the ratio between losses due to main shock with aftershocks to the losses due to the main shock only tended to increase with increasing main shock magnitude. This may be due to the fact that larger magnitude earthquakes tend to generate larger magnitude aftershocks and as those aftershocks happen within a region around the main shock, they are more likely to cause intense shaking and additional damage. In addition to this observation, it was observed that the most significant component of loss of the case study building was the non-structural partition walls.en
dc.identifier.urihttp://hdl.handle.net/10092/15010
dc.identifier.urihttp://dx.doi.org/10.26021/1379
dc.languageEnglish
dc.language.isoen
dc.publisherUniversity of Canterburyen
dc.rightsAll Right Reserveden
dc.rights.urihttps://canterbury.libguides.com/rights/thesesen
dc.titleIdentification of cost-effective retrofit and/or rehabilitation strategies for steel buildingsen
dc.typeTheses / Dissertationsen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorUniversity of Canterburyen
thesis.degree.levelMastersen
thesis.degree.nameMaster of Engineeringen
uc.bibnumber2589350en
uc.collegeFaculty of Engineeringen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ME thesis - Fransiscus Arifin.pdf
Size:
17.25 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: