Reducing beam hardening effects and metal artefacts in spectral CT using Medipix3RX (2013-11-21)
View/ Open
Type of Content
DatasetsCollections
Authors
Abstract
Studies on beam hardening and metal artefact reduction using Medipix All Resolution System (MARS) spectral scanner were carried out. Four datasets are provided - titanium phantom, titanium scaffold, magnesium scaffold and titanium mesh. Each of these datasets are organized as raw data, preprocessed and MARS-ART reconstruction. The 'RAW DATA' directory contains dicom files representing darkfield images, open beam images and raw projection images. The 'PREPROCESSED' directory contains darkfield corrected, normalized and ring-filtered projection images in tif format. The 'MARS-ART RECONSTRUCTION' directory contains full volume reconstruction in tif format for all the energy bins using algebraic reconstruction technique. Projections are taken for every camera position during the spectral scans and MARS-ART software directly operates on unstitched projections. The geometrical information for every projection image can be accessed from the dicom tags associated with each dicom file.
Keywords
X-ray detectors; Computerized tomography; Image reconstructionRelated items
Showing items related by title, author, creator and subject.
-
Reducing beam hardening effects and metal artefacts using Medipix3RX: With applications from biomaterial science
Rajendran, K.; Walsh, M.F.; de Ruiter, N.J.A.; Chernoglazov, A.I.; Panta, R.K.; Butler, A.P.H.; Butler, P.H.; Bell, S.T.; Anderson, N.G.; Woodfield, T.B.F.; Tredinnick, S.J.; Healy, J.L.; Bateman, C.J.; Aamir, R.; Doesburg, R.M.N.; Renaud, P.F.; Gieseg, S.P.; Smithies, D.J.; Mohr, J.L.; Mandalika, V.B.H.; Opie, A.M.T.; Cook, N.J.; Ronaldson, J.P.; Nik, S.J.; Atharifard, A.; Clyne, M.; Bones, P.J.; Bartneck, Christoph; Grasset, R.; Schleich, N.; Billinghurst, Mark (University of Canterbury. Biological SciencesUniversity of Canterbury. Computer Science and Software EngineeringUniversity of Canterbury. Electrical and Computer EngineeringUniversity of Canterbury. Human Interface Technology LaboratoryUniversity of Canterbury. Mathematics and StatisticsUniversity of Canterbury. Mechanical EngineeringUniversity of Canterbury. Physics and AstronomyUniversity of Canterbury. Biomolecular Interaction Centre, 2014)This paper discusses methods for reducing beam hardening effects using spectral data for biomaterial applications. A small-animal spectral scanner operating in the diagnostic energy range was used. We investigate the use ... -
Reducing beam hardening effects and metal artefacts in spectral CT using Medipix3RX
Rajendran, K; Walsh, M. F.; de Ruiter, N. J. A.; Chernoglazov, A. I.; Panta, R. K.; Butler, P. H.; Bell, S. T.; Woodfield, T. B. F.; Tredinnick, J.; Healy, J. L.; Bateman, C. J.; Aamir, R.; Doesburg, R. M. N.; Renaud, P. F.; Gieseg, S. P.; Smithies, D. J.; Mohr, J. L.; Mandalika, V. B. H.; Opie, A. M. T.; Cook, N. J.; Ronaldson, J. P.; Nik, S. J.; Atharifard, A.; Clyne, M.; Bones, P. J.; Bartneck, Christoph; Grasset, R.; Schleich, N.; Billinghurst, Mark; Butler, A. P. H.; Anderson, N. G. (2014-02-05)This paper discusses methods for reducing beam hardening effects and metal artefacts using spectral x-ray information in biomaterial samples. A small-animal spectral scanner was operated in the 15 to 80 keV x-ray energy ... -
MARS spectral molecular imaging of lamb tissue: data collection and image analysis
Aamir, R.; Chernoglazov, A.; Bateman, C. J.; Butler, A.P.H.; Butler, P.H.; Anderson, N.G.; Bell, S.T.; Panta, R.; Healy, J.L.; Mohr, J.L.; Rajendran, K.; Walsh, M.F.; de Ruiter, J.A.; Giesig, S.P.; Woodfield, T.; Renaud, P.F.; Brooke, L.V.; Majid, S.A.; Clyne, R.; Glendinning, R.; Bones, P.J.; Billinghurst, Mark; Bartneck, Christoph; Mandalika, H.; Grasset, R.; Schleich, N.; Scott, N.; Nik, S. J.; Opie, A.; Janmale, T.; Tang, D.N.; Kim, D.; Doesburg, R.M.; Zainon, R.; Ronaldson, J.P.; Cook, N.J.; Smithies, D.; Hodge, K. (2013-10-31)In this experiment, a meat specimen was prepared from a fresh lamb chop, which included muscle (water-like), fat (lipid-like) and bone (calcium-like) regions, and scanned. We used a 2 mm thick CdTe sensor (128×128), bump ...