• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    Wireless identification and sensing using surface acoustic wave devices

    Thumbnail
    View/Open
    schuler_thesis.pdf (15.66Mb)
    Author
    Schuler, Leo P
    Date
    2003
    Permanent Link
    http://hdl.handle.net/10092/8565
    Thesis Discipline
    Electrical Engineering
    Degree Grantor
    University of Canterbury
    Degree Level
    Masters
    Degree Name
    Master of Engineering

    Wireless Surface Acoustic Wave (SAW) devices were fabricated and tested using planar Lithium Niobate (LiNbO₃) as substrate. The working frequencies were in the 180 MHz and 360 MHz range. Using a network analyser, the devices were interrogated with a wireless range of more than 2 metres. Trials with Electron Beam Lithography (EBL) to fabricate SAW devices working in the 2450 MHz with a calculated feature size of 350 nm are discussed. Charging problems became evident as LiNbO₃ is a strong piezoelectric and pyroelectric material. Various attempts were undertaken to neutralise the charging problems. Further investigation revealed that sputtered Zinc Oxide (ZnO) is a suitable material for attaching SAW devices on irregularly shaped material. DC sputtering was used and several parameters have been optimised to achieve the desired piezoelectric effect. ZnO was sputtered using a magnetron sputtering system with a 75 mm Zn target and a DC sputter power of 250 Watts. Several trials were performed and an optimised material has been prepared under the following conditions: 9 sccm of Oxygen and 6 seem of Argon were introduced during the process which resulted in a process pressure of 1.2x10⁻² mbar. The coatings have been characterised using Rutherford Backscattering, X-ray diffraction, SEM imaging, and Atomic force microscopy. SAW devices were fabricated and tested on 600 nm thick sputtered ZnO on a Si substrate with a working frequency of 430 MHz. The phase velocity has been calculated as 4300m/s. Non-planar samples have been coated with 500 nm of sputtered ZnO and SAW structures have been fabricated on using BBL. The design frequency is 2450 MHz, with a calculated feature size of 1 μm. The surface roughness however prevented a successful lift-off. AFM imaging confirmed a surface roughness in the order of 20 nm. Ways to improve manufacturability on these samples have been identified.

    Collections
    • Engineering: Theses and Dissertations [2155]
    Rights
    http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us