• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    Real time optimisation of an active filter's performance and applications to the power system

    Thumbnail
    View/Open
    round_thesis.pdf (8.523Mb)
    Author
    Round, Simon Douglas
    Date
    1992
    Permanent Link
    http://hdl.handle.net/10092/8427
    Degree Grantor
    University of Canterbury
    Degree Level
    Doctoral
    Degree Name
    Doctor of Philosophy

    Power system loads have traditionally drawn a sinusoidal current. Due to recent advances in power electronics, many loads now draw a nonsinusoidal or distorted current from the supply. Regulations limit the level of distortion larger loads may draw, but small loads are excluded. However, the smaller loads collectively create a distortion problem which needs to be compensated for. To reduce the distortion drawn from the power system, a shunt active filter has been developed. Computer simulations which have been performed, demonstrate that the active filter can compensate for distortive load currents, resulting in near sinusoidal supply currents. Single and three phase analogue controlled active filters have been constructed to compensate for harmonic and phase displaced current distortion. The three phase active filter can also balance the supply currents for unbalanced harmonic loads. For different load types, the power amplifier switching frequency and DC bus voltage affect the active filter's efficiency and ability to reduce the supply current distortion. A digital controller has been developed which allows the active filter to operate at an optimum level of supply current and efficiency, independent of the load type. A financially based savings calculation has been developed to determine the relationship between distortion reduction and operational efficiency in order to perform this optimisation. The optimum operating point was determined using a simplex optimisation algorithm which climbs the calculated savings surface to achieve maximum savings. The ability of the optimisation algorithm to find the point of maximum savings and to adapt to load changes has been demonstrated. The optimisation algorithm has been extended to include phase displacement compensation in the calculation of the maximum savings point. A novel application of the active filter, where passive filters can not be used, is presented. This involves providing compensation for nonlinear loads operating from a weak, variable frequency AC system. The ability of the active filter to compensate for both the generator's current and voltage distortion is demonstrated. An initial investigation of a resonant link active filter to reduce the switching losses is also presented.

    Collections
    • Engineering: Theses and Dissertations [2155]
    Rights
    http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us