University of Canterbury Home
    • Admin
    UC Research Repository
    UC Library
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    1. UC Home
    2. Library
    3. UC Research Repository
    4. Faculty of Engineering | Te Kaupeka Pūhanga
    5. Engineering: Theses and Dissertations
    6. View Item
    1. UC Home
    2.  > 
    3. Library
    4.  > 
    5. UC Research Repository
    6.  > 
    7. Faculty of Engineering | Te Kaupeka Pūhanga
    8.  > 
    9. Engineering: Theses and Dissertations
    10.  > 
    11. View Item

    A probabilistic comparison of times to flashover in a compartment with wooden and non-combustible linings considering variable fuel loads (2012)

    Thumbnail
    View/Open
    thesis_fulltext.pdf (5.159Mb)
    Type of Content
    Theses / Dissertations
    UC Permalink
    http://hdl.handle.net/10092/7650
    http://dx.doi.org/10.26021/2205
    
    Thesis Discipline
    Fire Engineering
    Degree Name
    Master of Engineering in Fire Engineering
    Publisher
    University of Canterbury. Department of Civil and Natural Resources Engineering
    ISSN
    1173-5996
    Collections
    • Engineering: University of Canterbury Fire Engineering Programme Research Publications [98]
    • Engineering: Theses and Dissertations [2784]
    Authors
    Studhalter, Jakob
    show all
    Abstract

    Prescriptive fire safety codes regulate the use of combustible room linings to reduce fire risk. These regulations are based on classification systems which designate materials according to their relative hazard when exposed to a standard fire scenario. However, no quantitative data sets on the fire risk of wooden lining materials exist which take into account relevant uncertainties, such as movable fuel loads in compartments. This work is a comparative risk analysis on the influence of wooden linings on the time to flashover in a compartment, considering uncertainties in the fuel load configuration. A risk model is set up for this purpose using B-RISK, a probabilistic fire design and research tool currently under development at BRANZ (Building Research Association of New Zealand) and the University of Canterbury. The risk model calculates fire spread in a compartment between fuel load items and from fuel load items to combustible linings. Multiple iterations are performed considering varying fuel load arrangements and input values sampled from distributions (Monte-Carlo simulation). The functionality and applicability of the risk model is demonstrated, comparing the model with experiments from the literature. The model assumptions are described in detail. Some of the model inputs are defined as distributions in order to account for uncertainty. Parametric studies are conducted in order to analyse the sensitivity of the results to input parameters which cannot be described as distributions. Probabilistic times to flashover are presented and discussed for an ISO 9705 compartment considering varying movable fuel loads and different lining configurations. The fuel load is typical for a hotel room occupancy. Effects of suppression measures are not considered. It is shown that flashover occurs approximately 60 seconds earlier if walls and ceiling are lined with wooden materials than if all linings are non-combustible. This value refers to the 5th percentiles of the time to flashover, i.e. in 5% of the cases flashover has occurred and in 95% of the cases flashover has not (yet) occurred. Referring to 50th percentiles (median values), the difference is approximately 180 seconds. Furthermore it is shown that with wooden wall and ceiling linings in approximately 95% of the iterations flashover occurs, whereas with non-combustible linings 86% of the iterations lead to flashover. After 900 seconds, in 90% of the iterations flashover occurs if walls and ceiling are lined with wooden materials, and in 77% of the iterations if the linings are non-combustible. Using different wooden lining materials (non-fire retardant plywood, fire retardant plywood, and MDF) has no significant effect on the probabilistic times to flashover. Varying the fuel load energy density has an influence only when all linings are non-combustible and when the fuel load energy density is relatively low (100–200 MJ/m2). This work contains recommendations regarding the further development of B-RISK, the research into the fire risk connected with wooden room linings, and suggestions regarding the further development of prescriptive fire safety codes.

    Keywords
    lining fire hazard; risk analysis; probabilistic; ISO 9705 compartment; Monte-Carlo simulation; wooden linings; fuel load; B-RISK; BRANZFIRE
    Rights
    Copyright Jakob Studhalter
    https://canterbury.libguides.com/rights/theses

    Related items

    Showing items related by title, author, creator and subject.

    • Probabilistic Risk Analysis in Transport Project Economic Evaluation 

      Lieswyn, John (University of Canterbury. Civil and Natural Resources Engineering, 2012)
      Transport infrastructure investment decision making is typically based on a range of inputs such as social, environmental and economic factors. The benefit cost ratio (BCR), a measure of economic efficiency (“value for ...
    • Stochastic forest growth simulation: incorporating growth prediction uncertainty with wind and fire damage into carbon sequestration estimates and discounted cash flow analysis. 

      Dowling, Leslie John (University of Canterbury. School of Forestry, 2015)
      Uncertainty in forest productivity prediction and the variable reduction from wind and fire damage makes predictions of forest Net Present Values (NPVs) and carbon sequestration uncertain, creating a distribution of possible ...
    • Time distribution analysis for flasher data and simulations in the IceCube neutrino detector 

      Sarah, Bouckoms (University of Canterbury. Physics and Astronomy, 2011)
      The IceCube neutrino observatory is located in the deep glacial ice below the South Pole. IceCube consists of over 5, 000 photomultiplier tubes regularly spaced throughout a cubic kilometre volume of ice. The photomultiplier ...
    Advanced Search

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThesis DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsThesis Discipline

    Statistics

    View Usage Statistics
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer