• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    Fibre-imprint Technology Development

    Thumbnail
    View/Open
    thesis_fulltext.pdf (22.70Mb)
    Author
    Wang, Nick
    Date
    2011
    Permanent Link
    http://hdl.handle.net/10092/6723
    Thesis Discipline
    Electrical Engineering
    Degree Grantor
    University of Canterbury
    Degree Level
    Masters
    Degree Name
    Master of Engineering

    Nanoimprint lithography (NIL) has become a promising technology for high-resolution nano-scale patterning, numerous applications have been exploited by using NIL. However, the need for fast, high-throughput process is required in the production of large-area patterns. In particular, the reel-to-reel nanoimprint lithography has been proven to yield large areas of continuous, high-resolution patterns in the micro- and nano-scale range.

    In this work, self-aligning fibre imprinting process is developed by using continuous reel-to-reel roller embosser, which can be potentially applied to a range of different fibre materials. This work contains a complete and thorough demonstration including the process of stamp fabrication, fibre imprinting process and full characterization of the imprinted fibre. The proposed techniques involved in this work are described, and the results are analyzed. These techniques include fabricating fibre guide structure, fine feature writing and nickel stamp replication.

    1mm-diameter Teflon monofilament is chosen for this fibre imprinting work, the characterization results confirmed that replicated structures are transfered from the electroplated nickel stamp onto the Teflon fibre. The factors which impact the imprinted results are studied, such as roller gap width and rolling speed. It is also shown that more than 50 imprints have been performed using the same stamp without significant degradation.

    Subjects
    fibre imprinting
     
    electroplating
     
    stamp
    Collections
    • Engineering: Theses and Dissertations [2264]
    Rights
    https://canterbury.libguides.com/rights/theses

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us