Geotechnical Investigations of Wind Turbine Foundations Using Multichannel Analysis of Surface Waves (MASW)

Type of content
Theses / Dissertations
Publisher's DOI/URI
Thesis discipline
Engineering Geology
Degree name
Master of Science
Publisher
University of Canterbury. Geological Sciences
Journal Title
Journal ISSN
Volume Title
Language
Date
2011
Authors
Hicks, Malcolm Andrew
Abstract

The geophysical technique known as Multichannel Analysis of Surface Waves, or MASW (Park et al., 1999) is a relatively new seismic characterisation method which utilises Rayleigh waves propagation. With MASW, the frequency dependent, planar travelling Rayleigh waves are created by a seismic source and then measured by an array of geophone receivers. The recorded data is used to image characteristics of the subsurface.

This thesis explains how MASW was used as a geotechnical investigation tool on windfarms in the lower North Island, New Zealand, to determine the stiffness of the subsurface at each wind turbine site. Shear‐wave velocity (VS) profiles at each site were determined through the processing of the MASW data, which were then used to determine physical properties of the underlying, weathered greywacke.

The primary research site, the Te Rere Hau Windfarm in the Tararua Ranges of the North Island, is situated within the Esk Head Belt of Torlesse greywacke (Lee & Begg, 2002). Due to the high level of tectonic activity in the area, along with the high rates of weathering, the greywacke material onsite is highly fractured and weathering grades vary significantly, both vertically and laterally. MASW was performed to characterise the physical properties at each turbine site through the weathering profile. The final dataset included 1‐dimensional MASW shear‐wave evaluations from 100 turbine sites. In addition, Poisson’s ratio and density values were characterised through the weathering profile for the weathered greywacke. During the geotechnical foundation design at the Te Rere Hau Windfarm site, a method of converting shear wave velocity profiles was utilised. MASW surveying was used to determine VS profiles with depth, which were converted to elastic modulus profiles, with the input parameters of Poisson’s ratio and density.

This study focuses on refining and improving the current method used for calculating elastic modulus values from shear‐wave velocities, primarily by improving the accuracy of the input parameters used in the calculation. Through the analysis of both geotechnical and geophysical data, the significant influence of overburden pressure, or depth, on the shear wave velocity was identified. Through each of the weathering grades, there was a non‐linear increase in shear wave velocity with depth. This highlights the need for overburden pressure conditions to be considered before assigning characteristic shear wave velocity values to different lithologies.

Further to the dataset analysis of geotechnical and geophysical information, a multiple variant non‐linear regression analysis was performed on the three variables of shear wave velocity, depth and weathering grade. This produced a predictive equation for determining shear wave velocity within the Esk Head belt ‘greywacke’ when depth and weathering data are known. If the insitu geological conditions are not comparable to that of the windfarm sites in this study, a set of guidelines have been developed, detailing the most efficient and cost effective method of using MASW surveying to calculate the elastic modulus through the depth profile of an investigation site.

Description
Citation
Keywords
MASW, multichannel analysis surface waves, greywacke, Esk Head belt, wind turbine, weathered rock
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Rights
Copyright Malcolm Andrew Hicks