• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Science
    • Science: Theses and Dissertations
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Science
    • Science: Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    Case studies in mathematical modelling for biological conservation

    Thumbnail
    View/Open
    basse_thesis.pdf (6.166Mb)
    Author
    Basse, Britta
    Date
    1999
    Permanent Link
    http://hdl.handle.net/10092/4804
    Thesis Discipline
    Mathematics
    Degree Grantor
    University of Canterbury
    Degree Level
    Doctoral
    Degree Name
    Doctor of Philosophy

    The use of mathematical modelling as a tool for investigating selected topics in conservation biology is the focus of this thesis. A continuous system of partial and ordinary differential equations model the age structured population dynamics of a cohort of endemic, threatened New Zealand North Island brown kiwi, Apteryx mantelli. Critical predation and recruitment rates of immature birds are estimated. Stoats, Mustela erminea, are the main predator of immature kiwi. A refinement to the model allows the calculation of acceptable stoat densities. In order to reduce stoats to this critical density, a linear system of ordinary differential equations, representing an acute secondary poisoning regime, is solved. An optimal secondary poisoning scheme, which minimises the number of prey poisoned and the amount of poison used, is found. The minimum area required for pest control is estimated by simulating the dispersal of sub-adult kiwi using a discrete random walk approach. Simulations and a discrete age structured model are used to investigate pulsed management strategies for both kiwi and kokako, Callaeas cinerea wilsoni. Finally, a two dimensional discrete random walk is generalised and a continuous diffusion equation is derived. A diffusion equation is incorporated into a S1 R (Susceptible, Infected, Recovered) model representing the natural spread of Rabbit Haemorrhagic Disease from a point source in rabbit, Oryctolagus cuniculus cuniculus, populations. The speed for the virus, dependant on certain model parameters, is found and the minimum initial population density, below which the wave of infection will not travel, is estimated. All specific models discussed throughout the thesis are generic by nature and can be applied to a diverse range of subjects.

    Collections
    • Science: Theses and Dissertations [3451]
    Rights
    https://canterbury.libguides.com/rights/theses

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us