Potential of metal monoliths with grown carbon nanomaterials as catalyst support in intensified steam reformer: a perspective (2018)

View/ Open
Type of Content
Journal ArticleISSN
0167-8299Collections
Abstract
A monolithic catalytic support is potentially a thermally effective system for application in an intensified steam reforming (SR) process. In contrast to ceramic analogues, metal monoliths exhibit better mechanical strength, thermal conductivity and a thermal expansion coefficient equivalent to that of the reformer tube. A layer of carbon nanomaterials grown on the metal monolith’s surface can act as textural promoter offering sufficient surface area for hosting homogeneously dispersed catalytically active metal particles. Carbon nanomaterials possess good thermal conductivities and mechanical properties. The future potential of this system in SR is envisaged based on hypothetical speculation supported by fundamental carbon studies from as early as the 1970s and sufficient literature evidence from relatively recent research on the use of monolith and carbon in catalysis. Thermodynamics and active interaction between metal particle surface and carbon-containing gas result in coke deposition on the nickel-based catalysts in SR. The coke is removable via gasification by increasing steam to carbon ratio to above stoichiometric but risks a parallel gasification of the carbon nanomaterials textural promoter, leading to nickel particles sintering. We present our perspective based on literature that under the same coke gasification conditions, the highly crystallized carbon nanomaterials maintains high chemical and thermal stability.
Citation
Potential of metal monoliths with grown carbon nanomaterials as catalyst support in intensified steam reformer: a perspective. Luqmanulhakim Baharudin / Alex Chi-Kin Yip / Vladimir Golovko / Matthew James Watson. Reviews in Chemical Engineering. Published Online: 2018-10-04This citation is automatically generated and may be unreliable. Use as a guide only.
Keywords
carbon nanomaterials; metal monolith; process intensification; steam reforming; textural promoterANZSRC Fields of Research
40 - Engineering::4018 - Nanotechnology::401807 - Nanomaterials40 - Engineering::4004 - Chemical engineering::400408 - Reaction engineering (excl. nuclear reactions)
03 - Chemical Sciences::0399 - Other Chemical Sciences::039903 - Industrial Chemistry
34 - Chemical sciences::3406 - Physical chemistry::340601 - Catalysis and mechanisms of reactions
03 - Chemical Sciences::0303 - Macromolecular and Materials Chemistry::030302 - Nanochemistry and Supramolecular Chemistry
Related items
Showing items related by title, author, creator and subject.
-
On validating the hypothetical activity of hexameric copper nanocluster catalysts in a CO conversion reaction (CO oxidation)
Baharudin L; Yip, Alex; Golovko V; Watson M (2018) -
Modifying Single Layer Graphene with Aryl Diazonium Salts
Farquhar, A.K.; Brooksby, P.A.; Downard, A.J. (University of Canterbury. Chemistry, 2015)Making workable devices from graphene Graphene is difficult to handle: • Tendency to aggregate • Limited reactivity. Chemical modification improves handling and introduces functionality. A promising method is the ... -
Monolithic substrate support catalyst design considerations for steam methane reforming operation
Baharudin L; Watson MJ (2017)This paper reviews the research undertaken to study the design criteria that address the monolithic support structure requirements in steam reforming operation for the effective mass transfer of process gases to the active ...