Channel modelling and fractionallyspaced MMSE equalisers for broadband channels. (2018)
Type of Content
Theses / DissertationsThesis Discipline
Electrical EngineeringDegree Name
Doctor of PhilosophyPublisher
University of CanterburyLanguage
EnglishCollections
Abstract
In response to the increasing demand for high data rate communications, broadband (BB) wireless systems utilising several gigahertz (GHz) of bandwidth will be used in future generations of wireless networks. The characteristics of BB wireless channels differ from those of narrowband (NB) channels. Three of the key differences are as follows:
1. The response of communication system components (e.g., connectors and anten nas in each direction) and propagation mechanisms (e.g., diffraction, scattering, reflection from and transmission through obstacles) over a wide frequency band are frequency selective. As a result, perpath pulse distortion in BB channels is more than NB channels. In NB channel modelling the frequency dependency of physical channel effects are usually ignored and the frequency dependency of antennas and connectors are minimised using matching circuits and appropriate antenna design. The residual frequency dependency does not cause considerable approximation error because variations of the electric parameters of materials over a narrow frequency band are not significant. 2. The delay spread of BB channels in terms of symbol interval are much longer than those of NB channels. This is due to the fact that the duration of a BB pulse is shorter than that of a NB pulse. 3. A BB channel consists of many clusters of propagation paths. The clustering effect tends not to be observable in indoor NB channel measurements because the pulse length1 of electromagnetic pulses used in NB systems are usually large compared to the geometrical size of the scatterers and the differences between the lengths of paths travelled by individual pulses. Therefore, a large number of received pulses overlap at the receiver to make a single fading multipath compo nent. But, when the pulse bandwidth is large, its duration (and consequently, its pulse length) is short and the number of overlapping pulses at the receiver are fewer.
Perpath pulse distortion occurs in channels with large fractional bandwidths. Longer delay spread and the clustering phenomena are more observable in channels with large absolute bandwidths. In channel modelling there are no particular values for absolute or fractional bandwidths in order to be used for classifying channels with respect to the significance of perpulse distortion effects, channels’ delay spreads or their clustering effects. This is so because the significance of these effects not only depend on the channel’s fractional and absolute bandwidth but also on the communication environment. Therefore, in this thesis, we use the term BB to refer to those channels that in their mathematical models none of the above mentioned effects is ignored. The design of an appropriate receiver and its theoretical and simulated perfor mance analysis depends on the adopted model for the channel. In this thesis, certain issues regarding channel modelling and receiver designing for BB systems are consid ered.
Considering the above mentioned differences of NB and BB channels, we derive a mathematical formula for a lowpass received signal from a BB channel which in cludes pulse distorting effects of the physical channel due to frequency selectivity and wideband Doppler effect. For a given pulse shaping filter, we characterise the small est signal space that includes the set of all received signals from a BB channel. In particular, it is shown that an appropriate model for a BB channel is a fractionally spaced tapped delayline (TDL) model in which the tap delays are shorter than the symbol interval. Then, using a realizable frontend receiver filter and the properties of orthonormal bases, a set of variables is extracted that constitute a sufficient statistic for any optimum receiver. The geometry of Hilbert spaces and the theory of shift invariant subspaces of finiteenergy signals are used to prove the sufficiency of the extracted statistic. Our approach does not suffer from the ideality of the Shannon sampling theorem and the corresponding sampling models for communication chan nels. We show that using realisable filters the performance of the ideal lowpass filter can be achieved.
As a case study of the perpath pulsedistorting effects of a physical channel, we analyse the effects of lossy dielectric walls on BB pulses by using the basic principles of electromagnetics and frequency domain methods. The frequencydependent param eters of commonly used building materials are used to analyse the effects of multiple reflections and transmissions, material distortion, and interpulse interference (IPI) on BB pulse waveforms. The possibility of polarisationdependent distortion (PDD) is discussed. Various thicknesses of walls and angles of incidence are considered. The distortion due to each effect is quantified in terms of maximum correlation coefficients (MCCs). The overall effect of the wall is modelled as a TDL filter based on the MCC. Using our model derivation approach, the sources of the multicluster and the softonset phenomena of BB channel models are explained. This part of the thesis proposes a theoretical approach, by using laws of classical electromagnetics, to derive models for indoor channels where reflection from and transmission through walls or partitions are major propagation mechanisms. The theoretical approach can be used to complement and validate the experimental channel modelling approaches.
It is well known that in a linear transmission system with unknown channel infor mation, where a basic pulse shape with nonzero excess bandwidth is used for transfer ring information symbols, a sufficient statistic for any optimum detection method can only be obtained by sampling the received signal at rates higher than or equal to the Nyquist rate for the received signal2. In this case the channel observed by a receiver is a fractionallyspaced (FS) TDL channel. Specially, in BB channels where there exists significant pulse distortion due to the frequency dependency of the BB channel effects, the necessity of adopting a FS channel model and employing a FS equaliser becomes more prominent.
Another feature of BB channels is their longer delay spread compared to NB chan nels when measured in terms of their corresponding symbol intervals. The longer delay spread of BB channels increases the sensitivity of adaptive receivers to perturbations when used for these channels.
The final part of the thesis is devoted to spectral analysis of FS minimum mean square error (MMSE) equalisers. While many aspects of the FS MMSE equalisers have been studied since their first appearance in the literature in 1970s, some aspects of them are not completely understood. For example, behaviour of a FS MMSE equaliser is usually speculated based on the eigenvalues of the correlation matrix of the input FS samples of the received signal. A characterisation of the equaliser in terms of its transfer function (TF) that includes the effects of the front end prefilter and sampler is not available in the literature. In Chapter 4, we derive the TF of a FS MMSE equaliser under the general system model described in Chapter 2. Then, the TF is used to analyse the behaviour of the adaptive FS MMSE equaliser.
An adaptive FS MMSE equaliser, implemented using the leastmeansquare (LMS) algorithm, suffers from instability. Stabilisation of adaptive FS MMSE equalisers has a long history. A major problem in dealing with FS sampling receivers is the non stationarity of the received sampled process, even if the channel itself is time invariant. In communication systems that use a linear modulation scheme for transmission, the FS samples of the received signal from a widesense stationary (WSS) channel constitute a widesense cyclostationary (WSCS) time series. Hence, standard Fourier transform techniques cannot be used directly to study the spectral characteristics of the received FS samples or to derive the TF of the corresponding MMSE receiver. In this thesis, an expression for the TF of the FS MMSE equaliser is derived. Due to the WSCS nature of the input sampled signal, the FS equaliser’s TF is periodically time varying. Using the TF, the sources of instability of the FS LMS algorithm are characterized. The obtained results improve the existing knowledge in the literature regarding the sources of instability of FS MMSE equalisers. Based on the analysis performed, sufficient conditions are provided to increase the stability and guarantee convergence of the FS LMS algorithm.
For channels with longer delay spread, such as BB channels, the corresponding TDL equaliser needs to be sufficiently long in order to perform satisfactorily. The LMS algorithm is more sensitive to perturbation when the equaliser delay line is longer. The effects of equaliser length and sampling phase on stability of the LMS algorithm are explained. The waveform level simulations of communication systems validates the theoretical results.
Rights
All Right ReservedRelated items
Showing items related by title, author, creator and subject.

A new spacetime MIMO channel model
Zhang, M.; Smith, P.J.; Shafi, M. (University of Canterbury. Electrical and Computer Engineering., 2005)In this paper we develop a MIMO channel model and derive its spatial and temporal correlation properties. We present a generalized methodology to derive the spatial correlation when the angles of arrival (AoA ) and angles ... 
SpaceFrequency Equalization for Broadband Single Carrier MIMO Systems
Kongara, G.; Taylor, D.P.; Martin, P.A. (University of Canterbury. Electrical and Computer Engineering, 2008)In this paper, a frequency domain (FD) receiver architecture implemented using estimated channel parameters is derived for broadband single carrier modulations. Cochannel and intersymbol interferences are compensated by ... 
SpaceFrequency Equalization in Broadband Single Carrier Systems
Kongara, Gayathri (University of Canterbury. Electrical and Computer engineering, 2009)Broadband wireless access systems can be used to deliver a variety of high data rate applications and services. Many of the channels being considered for such applications exhibit multipath propagation coupled with large ...