University of Canterbury Home
    • Admin
    UC Research Repository
    UC Library
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    1. UC Home
    2. Library
    3. UC Research Repository
    4. Faculty of Engineering | Te Kaupeka Pūhanga
    5. Engineering: Theses and Dissertations
    6. View Item
    1. UC Home
    2.  > 
    3. Library
    4.  > 
    5. UC Research Repository
    6.  > 
    7. Faculty of Engineering | Te Kaupeka Pūhanga
    8.  > 
    9. Engineering: Theses and Dissertations
    10.  > 
    11. View Item

    Quantifying the benefits from the spatial diversification of wind power in New Zealand. (2016)

    Thumbnail
    View/Open
    McQueen, Dougal PhD Final thesis.pdf (16.55Mb)
    Type of Content
    Theses / Dissertations
    UC Permalink
    http://hdl.handle.net/10092/13492
    http://dx.doi.org/10.26021/2256
    
    Thesis Discipline
    Electrical Engineering
    Degree Name
    Doctor of Philosophy
    Publisher
    University of Canterbury
    Language
    English
    Collections
    • Engineering: Theses and Dissertations [2907]
    Authors
    McQueen, Dougal
    show all
    Abstract

    Wind power is one of the least cost forms of electricity generation, which along with the need to reduce carbon emissions, means that wind power capacity will certainly increase. The turbulent nature of wind and the passive reaction of wind turbines ensures that wind power is variable. The variability in power increases the requirement for system reserves to ensure power quality is maintained. Integration studies are undertaken to determine what impact wind power development will have on the power system and an often reached conclusion is that spatial diversification can alleviate some of the impacts. However, many of these studies fall short of quantifying the benefit of spatial diversification. To quantify that benefit requires models of wind power that are spatially and temporally consistent and congruent with other forms of generation and demand. In this thesis a wind power model is formed, starting with wind speed time-series from the European Centre for Medium-range Weather Forecasting reanalysis which are interpolated, scaled and imputed. The imputation requires a model of turbulence and a Wavelet Multi-resolution Analysis model is developed that accounts for the heteroskedasticity of wind while enforcing the correct temporal and spatial correlations. The wind speed time-series are transformed to power using wind power plant power curves. A Low Pass Filter is developed that accounts for the effect of spatial integration performed by Wind Power Plants. To demonstrate the benefit of spatial diversification in the New Zealand power system four scenarios are developed representing 2 GW wind power portfolios. The scenarios are Compact, Disperse, Diverse, and Business As Usual (BAU). Metrics for reliability, variability, and predictability are defined that reflect the structure of the New Zealand Electricity Market. Reliability is assessed using the standard deviation of power. Variability is assessed using ramp rates over a 5 minute period which equates with the window used for reserves scheduling. Predictability is assessed using persistence forecast errors over 2 hour horizons which equates with the gate closure in the New Zealand Electricity Market. The conclusion is that a compact wind generation portfolio will exhibit lower reliability, a diverse portfolio will exhibit less variability, and a disperse portfolio will exhibit greater predictability. The BAU scenario shows that the existing portfolio of Wind Power Plants in New Zealand achieves some of the benefits of spatial diversification, however greater benefit could be achieved through careful planning. This thesis forms part of Research Aim 1.1.1 of the GREEN Grid project.

    Rights
    All Right Reserved
    https://canterbury.libguides.com/rights/theses

    Related items

    Showing items related by title, author, creator and subject.

    • Quantifying the benefits from the spatial diversification of wind power in New Zealand 

      McQueen D; Wood A (2017)
      A common conclusion from wind integration studies is the benefit of spatial diversification of Wind Power Plants for power systems. However, few of these studies quantify the benefit that may be apparent from different wind ...
    • Quantifying benefits of wind power diversity in New Zealand 

      McQueen, Dougal; Wood, Alan (IET Renewable Power Generation, 2019)
      Wind integration studies often focus on the capacity value of wind power without considering Unit Commitment and Economic Dispatch or resolving requirements for ancillary services. Here, a novel method for simulating wind ...
    • There is potential for pumped hydro energy storage in New Zealand 

      McQueen, Dougal (University of Canterbury, 2019)
      The decarbonisation of New Zealand’s energy system will increase demand for electricity at the same time as fossil fuelled generation is phased out. Maintaining balance in the power system will become increasingly difficult ...
    Advanced Search

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThesis DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsThesis Discipline

    Statistics

    View Usage Statistics
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer