University of Canterbury Home
    • Admin
    UC Research Repository
    UC Library
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    1. UC Home
    2. Library
    3. UC Research Repository
    4. Faculty of Engineering | Te Kaupeka Pūhanga
    5. Engineering: Theses and Dissertations
    6. View Item
    1. UC Home
    2.  > 
    3. Library
    4.  > 
    5. UC Research Repository
    6.  > 
    7. Faculty of Engineering | Te Kaupeka Pūhanga
    8.  > 
    9. Engineering: Theses and Dissertations
    10.  > 
    11. View Item

    Reservoir computing approaches to EEG-based detection of microsleeps. (2017)

    Thumbnail
    View/Open
    Ayyagari, Subramanya final PhD thesis.pdf (3.956Mb)
    Type of Content
    Theses / Dissertations
    UC Permalink
    http://hdl.handle.net/10092/13205
    http://dx.doi.org/10.26021/1455
    
    Thesis Discipline
    Computer Science
    Degree Name
    Doctor of Philosophy
    Publisher
    University of Canterbury
    Language
    English
    Collections
    • Engineering: Theses and Dissertations [2949]
    Authors
    Ayyagari, Sudhanshu
    show all
    Abstract

    Long-haul truck drivers, train drivers, and commercial airline pilots routinely experience monotonous and extended driving periods in a sedentary position, which has been associated with drowsiness, microsleeps, and serious accidents. Consequently, the detection and preferably prediction of the microsleeps in subjects working in these high-risk occupations is very important to workplace safety. Therefore, the aim of this project was EEG-based characterization and early detection of microsleeps during a sustained attention task. The overall approach was to identify reliable physiological cues of lapses of sustained attention and microsleeps, to develop a microsleep system which could be used to detect, or better yet, predict the onset of microsleeps in real time and trigger an alert to rouse the user from an impending microsleep. The main motivation of this project was to develop a state-of-the-art lapse detection system by employing novel classifier schemes based on reservoir computing (RC), specifically echo state networks (ESNs) with cascaded-leaky-integrator-neurons and liquid state machines (LSM) to increase current benchmark performances on microsleep detection.

    This is the first project and study to have implemented and evaluated EEG-based microsleep detection using RC models for the characterization and detection of microsleeps from the underlying EEG. Moreover, the novelty of the ESN-based cascaded-leaky-integrator neuron approach is in its simplicity (as networks with only 8 or less neurons could achieve optimal performance) and its superior microsleep detection performance.

    In this research, previously collected behavioral EEG data from fifteen healthy male, non-sleep-deprived volunteers performing a 1D-visuomotor tracking task for 1 hour, was used to form classifier models capable of detecting microsleeps with second-scale resolution. The performance of the microsleep detector was measured both in terms of its ability to detect the lapses-of-responsiveness states and microsleep states (in 1-s epochs). The previous lapse detection benchmark performance on this data, used a simple linear discriminant analysis (LDA)-based classifier, fitted with a meta-learner model. This LDA-based system reported the best performance in terms of its mean phi correlation (φ) = 0.39± 0.06, receiver operator characteristics. An epoch length of 2 s and an overlap window of 1 s (50%) between successive epochs were used in the analysis (AUC-ROC) = 0.86 ± 0.03, and precision recall (AUC-PR) = 0.43± 0.09.

    Models based on EEG power spectra, and power in the traditional bands, were used to detect the changes in the EEG during microsleeps. Normalized EEG epochs with z-scores > 30 were excluded from analysis, resulting in rejection of 8.3% of the epochs. This process was referred to as data pruning. Reduced features from 6 independent feature reduction schemes including, principal components analysis (PCA), kernel PCA (KPCA), probabilistic PCA (PPCA), symmetric neighbourhood embedding (SNE), Nearest neighbour embedding (NNE), and stochastic proximity embedding (SPE) were passed as an input to the classifier models. Classifier models evaluated included the RC-based models including the ESNs with sigmoidal neurons, cascaded ESNs with leaky-integrator neurons and LSMs. The RC-based models were compared to other standard classifier models, such as, support vector machines with polynomial kernel (SVMP), LDA, spiky neural networks (SNN), and k-nearest neighbour (KNN) classifiers.

    Best microsleep detection was achieved using cascaded ESNs with cascaded-leaky-integrator neurons and 50-60 PCs from PCA of the overall 544 power spectral features. This configuration resulted in φ = 0.51 ± 0.07 (mean ± SE), AUC-ROC = 0.88 ± 0.03, and AUC-PR = 0.44 ± 0.09. LSM-based detectors had a lower performance of φ = 0.42 ± 0.06, AUC-ROC = 0.83 ± 0.03, and AUC-PR = 0.43±0.06, compared to the cascaded-leaky-ESN approach. The PCA-based feature reduction modules showed the highest overall performances of the 6 feature-reduction schemes evaluated. This high performance of PCA-modules was found on all classifier schemes. PPCA-based methods followed the PCA schemes in terms of the best microsleep detection performances. Analysis also showed that creating multiple microsleep detection models (ensemble learning) and combining them to form an overall detector resulted in an improvement in performance over a single classifier model. Microsleep detection was also found to have higher accuracy than the other metrics of flatspots, video microsleeps and definite microsleeps.

    To study the effect of pruning the data, performances were determined for the classifiers when presented with unpruned data in its entirety for training. Performance was compared with a previous study which used a long short-term memory (LSTM) recurrent neural network (RNN) for which φ = 0.38 ± 0.07, AUC-ROC = 0.84 ± 0.02, and AUC-PR = 0.41 ± 0.08). Similar to the pruned datasets, ESNs with cascaded-leaky-integrator neuron models outperformed all the other classifier schemes and set a new benchmark for EEG-based microsleep detection of φ = 0.44 ± 0.06, AUC-ROC = 0.88 ± 0.04, and AUC-PR = 0.45 ± 0.09. This performance, albeit lower than for the pruned datasets, is deemed the best overall performance for microsleep detection as it was for the full behavioural dataset.

    In summary, the cascaded-leaky-integrator-ESN approach has provided a new benchmark performance for microsleep detection, which is significantly higher (p = 0.012) than by all previous approaches. Notwithstanding, the performance of these EEG‐based microsleep detection systems is still considered to be modest. Further research is needed to identify additional cues in the EEG leading to devices capable of more accurate detection and prediction of microsleeps.

    Keywords
    EEG; Microsleeps; Lapses of responsiveness; Supervised feature reduction; Trustworthiness; Reservoir computing; Echo state network; Leaky-integrator echo state network
    Rights
    All Right Reserved
    https://canterbury.libguides.com/rights/theses

    Related items

    Showing items related by title, author, creator and subject.

    • EEG-based event detection using optimized echo state networks with leaky integrator neurons 

      Ayyagari, S.; Jones, R.D.; Weddell, S.J. (University of Canterbury. Electrical and Computer Engineering, 2014)
      Long-haul truck drivers, train drivers and commercial airline pilots routinely experience monotonous and extended driving periods in a sedentary position, which has been associated with drowsiness, microsleeps, and, ...
    • Reservoir Computing Approaches to Microsleep Detection 

      Ayyagari S; Jones R; Weddell, Stephen (IOP Publishing, 2020)
      The detection of microsleeps in a wide range of professionals working in high-risk occupations is very important to workplace safety. A microsleep classifier is presented that employs a reservoir computing (RC) methodology. ...
    • EEG-based microsleep detection using supervised learning 

      Ayyagari, S.; Jones, R.D.; Weddell, S.J. (University of Canterbury. Electrical and Computer Engineering, 2014)
      Tiredness and fatigue can often lead to brief instances of people falling asleep while engaged in some active task such as driving a motor vehicle. A study on fatigue by the General Association of German Insurance ...
    Advanced Search

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThesis DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsThesis Discipline

    Statistics

    View Usage Statistics
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer