Betaine Homocysteine Methyltransferase, Disease and Diet: The Use of Proton Nuclear Magnetic Resonance on Biological Methylamines

Type of content
Theses / Dissertations
Publisher's DOI/URI
Thesis discipline
Chemistry
Degree name
Doctor of Philosophy
Publisher
University of Canterbury. Chemistry
Journal Title
Journal ISSN
Volume Title
Language
Date
2006
Authors
Lee, Martin Bryce
Abstract

Homocysteine, an independent risk factor for cardiovascular disease, is methylated in the liver via the zinc metalloenzyme betaine-homocysteine methyltransferase (BHMT). Established assays for BHMT include a radiochemical assay, a colorometric assay, an HPLC assay and an in vivo microbiological assay. These techniques are either unsuitable for substrate specificity studies, or are unable to give kinetic measurements. BHMT was purified from liver and measured directly and kinetically by a novel ¹H-NMR spectroscopic assay. The disappearance of substrates and the formation of products are monitored simultaneously. Using 2 mM glycine betaine and homocysteine as substrates in 20 mM phosphate buffer (pH = 7.5) and measuring the production of N,N-dimethylglycine the CV is 6.3% (n = 6) and the detection limit is 6 nkatal. An endpoint assay for BHMT activity was also developed and had CV = 5.3%, n = 6, with a detection limit of 2 nkatal. The NMR spectroscopic assay was used to determine the substrate specificity with a library of alternative substrates. Analysis of betaine analogues with different chain length, α-substitution, substitution of the nitrogen and carboxyl moieties demonstrated that BHMT is inactive if there is any steric crowding of the nitrogen or α-carbon positions. BHMT is capable of using group VI heteroatom betaines as methyl donors, with much faster rates than glycine betaine. For glycine betaine the Km was 0.19 ± 0.03 mM with a Vmax of 17 ± 0.7 nMol min-1 mg-1. The same assay was used to detect and partially characterise a BHMT activity from hagfish liver that is similar to that of the mammalian enzyme. NMR spectroscopy was adapted for measurements of glycine betaine in urine, along with other medically significant methylamines. These were shown to be valid for clinical use and in animal studies. A novel metabolite of the sulfonium analogue of glycine betaine (methylsulfinylmethanoate) was identified in rats.

Description
Citation
Keywords
Betaine Homocysteine Methyltransferase, Cardiovascular disease, Nuclear Magnetic Resonance
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Rights
Copyright Martin Bryce Lee