Geochemical variations in glauconitic minerals : application as a potassium fertiliser resource.

Type of content
Theses / Dissertations
Publisher's DOI/URI
Thesis discipline
Geology
Degree name
Master of Science
Publisher
University of Canterbury. Geological Sciences
Journal Title
Journal ISSN
Volume Title
Language
Date
2015
Authors
Smaill, Joshua Ballantyne
Abstract

Nutrients for plant growth are often limited in soil systems and additions are required in the form of fertiliser. Potassium is an essential macro-nutrient for plants and demands for K are expected to increase in the future. Glaucony is an abundant marine mineral which may provide an alternative K-rich fertiliser resource. The South Island of New Zealand contains deposits of glaucony-rich rocks which were deposited in the Early- to Mid-Cenozoic during periods of low sedimentation to the seafloor. Here, the geochemistry of glaucony from the Waitaki Basin (Otago), the Waipara Greensand (North Canterbury) and the Stoney Creek Limestone (Karamea) was examined using spatially resolved geochemical analysis and dissolution experiments. Grain-by-grain analysis using Laser Ablation Induction Coupled Plasma Mass Spectrscopy (LA-ICP-MS) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM + EDS) revealed that glaucony from all deposits were of the mature type and were enriched in K. Glaucony derived from growth inside faecal pellets was found to contain elevated K and Fe concentrations compared to bioclast hosted glaucony. These variations can be explained by the physical properties of host grains and sea-floor redox conditions at the time of precipitation, both of which increased ionic mobility into the zone of glauconitisation. Solubility analysis showed that K^{+} was released from glaucony more rapidly than any other element. Additionally, decreasing the pH and introducing an oxidising agent (i.e, birnessite which is ubiquitous in soil environments) accelerated K^{+} release 13-fold. Trace metals including Cr, Zn, Cu and Ni were present in the solid phase analysis, however further investigation revealed that these elements were released into solution in low concentrations and may present a source of micro-nutrients, not a soil contaminant. These results suggest that glaucony may offer a source of slow releasing K fertiliser, and the South Island of New Zealand is ideally situated as a place to consider using glaucony as a locally sourced, environmentally sustainable K resource for agriculture.

Description
Citation
Keywords
Glauconite, marine geochemistry, fertiliser, potassium, South Island, geology, geochemistry, mineral resource, sedimentology, stratigraphy, Waipara Greensand, Oamaru, Karamea
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Rights
Copyright Joshua Ballantyne Smaill