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Abstract: Hyperglycaemia is a common physiological response in critically ill patients, and reflects the 
perturbed metabolic state associated with severe illness. Regulating blood glucose (BG) levels to pre-ICU 
concentrations may provide patients with a greater chance of survival and reduced complications. 
However, despite the potential benefits there is still no universally adopted method for regulating BG 
levels in the ICU, and several large trials have failed to provide a consistent level of BG regulation across 
multiple centers. Models of the glucose regulatory system together with specialized controllers can assist 
clinical staff in therapy decisions by optimizing insulin and nutrition dosing. These systems can be 
readily implemented using existing or commodity equipment. This article presents experiences in 
implementing such model-based BG control in eight studies across four clinical units in three countries 
and highlights challenges faced when translating control systems from design and simulation 
environments to daily bedside clinical usage. Several practical issues need to be addressed for successful 
clinical implementation. Patient response to glucose and insulin inputs needs to be characterized, and it 
has been observed that level of insulin response varies significantly between patients and within patients 
over time. Clinically desired target ranges for BG control often vary by clinic and by year, and thus 
control schemes are required to adapt. Finally, the design of the system interface plays an important role 
in merging with local clinical practices and achieving nursing support for the system.  Considerable 
variation exists, not only in the types of patients and observed responses to treatment, but also in the 
provision of clinical treatment. Thus a balance is required between flexibility and complexity to reduce 
training time and costs, improve transparency and promote independent clinical uptake. 
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1. INTRODUCTION 

Stress-induced hyperglycemia is a significant issue in critical 
care. Up to 30-50% of adult intensive care unit (ICU) patients 
and 32-86% of very low birth-weight neonatal ICU (NICU) 
patients are affected. Links to increased morbidity and 
mortality (McCowen et al., 2001, Krinsley, 2004, Hays et al., 
2006) have been established, and potentially benefits of 
regulating blood glucose (BG) levels have been observed 
(Chase et al., 2008b, Van den Berghe et al., 2001). 
Controlling glycemia has proved difficult due to the 
associated risk of hypoglycemia when highly dynamic 
patients are treated with exogenous insulin (Griesdale et al., 
2009). Both high and low glycemic extremes, as well as 
glycemic variability, have been independently linked to 
increased morbidity and mortality (Bagshaw et al., 2009, Egi 
et al., 2006, Krinsley, 2008). Accurate glycemic control 
(AGC) has proven difficult to achieve safely and consistently 
(Casaer et al., 2011), with increased hypoglycemia a common 
consequence of control attempts in many studies (Preiser et 
al., 2009, Beardsall et al., 2008).  

However, the higher nursing workloads due to high density 
glucose readings are impractical in many units (Mackenzie et 
al., 2005, Aragon, 2006). Hand-held glucometers are easier 
for measurement, but their larger errors can add additional 
difficulty for some AGC protocols. Finally, clinical 
compliance determines much of the efficacy of any AGC 

method, with quality of glycemic control thus also limited by 
the confidence and compliance of nursing staff (Aragon, 
2006, Chase et al., 2008a). All of these issues interact with 
the inherent inter- and intra- patient metabolic variability 
(Chase et al., 2011) to exacerbate the difficulty of achieving 
good control. Hence, glycemic control targets are often raised 
to mitigate these factors and avoid hypoglycemia as a best 
outcome compromise, despite the physiological and clinical 
evidence on the negative impact of even moderate 
hyperglycemia (McCowen et al., 2001, Krinsley, 2004). 

Three aspects of clinical implementation are covered in this 
article: a) Patient characteristics; b) Controller targets; and c) 
Clinical integration. Examples are provided of modifications 
and additions to the BG control system as it is transitioned 
from simulation environments to daily clinical usage. 

 

2. GLUCOSE CONTROL CLINICAL STUDIES 

Table I summarizes several clinical implementation studies of 
model-based decision support systems for glucose control 
that were performed between 2005 and 2012. These studies 
include both adult and neonatal cohorts, and several are on-
going. The studies presented in Table I range from 24-hour 
pilot trials to full clinical practice change.  

Several modifications to the control system to comply with 
local clinical practices are shown in Table I. Target ranges for 



 
 

     

 

control were based on local clinical guidelines and clinician 
preferences. SPRINT and STAR were both designed to 
incorporate nutrition modulation into control therapy. 
However some units preferred to leave nutrition unchanged, 
and thus control for these units was via insulin modulation 
only. Where nutrition modulation was allowed goal feeding 
rates varied between units in accordance with local practices. 
Bolus-based insulin delivery was used at Christchurch adult 
ICU implementations for patient safety and potential 
efficacy, with other hospitals opting for insulin infusions. The 
controller implementation vehicle was also customized for 
each hospital, with SPRINT using a unique paper-based 
form, and STAR software developed for either 
computers/laptops or tablets and generally translated to the 
local language of the unit (English, French or Hungarian). 

BG measurement and controller intervention frequency 
balanced the desire for frequent re-evaluation of patient 
metabolic state for therapy adjustment and clinical workload, 
and varied between studies. Additionally, neonatal care has 
further restrictions on measurement frequency due to limited 
blood volumes in pre-term infants (Le Compte et al., 2011a). 
Glucometers or blood gas analysers were used for BG 
measurement depending on the unit, with the latter generally 
having higher measurement accuracy. 

All relevant changes to controller parameters were evaluated 
in simulation prior to clinical usage (Lonergan et al., 2006b) 

using virtual patient simulated clinical trials. This stage 
allowed potential issues to be identified and communicated to 
clinical staff prior to trial commencement. 

The BG control results in Table 1 show a generally consistent 
level of control across the studies despite numerous 
implementation differences. Percentage of BG within target 
bands tended to be lower for the short-term 24-hour trials as a 
higher proportion of time is spent initially decreasing BG 
from hyperglycemic levels compared to the longer term 
studies. The width of target bands varied between studies 
from 2.1 mmol/L to 3.6 mmol/L, where wider target bands 
showed more BG measurement within target. However, the 
IQR width is relatively consistent, suggesting BG variability 
was controlled in all cases. Median BG reflected a balance 
between target BG range and nutrition practices of local 
units, where those units feeding more carbohydrates showed 
elevated median BG results. Insulin usage was also generally 
higher for units with higher carbohydrate nutrition regimes as 
expected to balance glycemic load. 

 

2. QUANTIFYING PATIENT RESPONSE 

The insulin sensitivity (SI) metric is used as the main driver 
for BG control in this system (Chase et al., 2011). This 
quantity is either explicitly evaluated in the case of STAR or 
implicitly determined in the SPRINT table format. Thus, 

TABLE I 
SPRINT AND STAR CLINICAL TRIALS AND IMPLEMENTATIONS 

Study details: SPRINT SPRINT-
Gyula STAR-Chch STAR-

Belgium-1 
STAR-

Belgium-2 STAR-Gyula NICU: short-
term 

NICU: long-
term 

Location Christchurch, 
NZ 

Gyula, 
Hungary 

Christchurch, 
NZ 

Liege, 
Belgium 

Liege, 
Belgium 

Gyula, 
Hungary 

Christchurch, 
NZ 

Christchurch, 
NZ 

ICU type Adult Adult Adult Adult Adult Adult Neonatal Neonatal 

No. patient episodes 371 12 19 9 9 14 8 27 

Target BG range (mmol/L) 4.0 - 6.1 4.0 - 6.1 4.4 - 8.0 4.4 - 7.8 
(target of 6.9) 5.6 - 7.8 4.4 - 8.0 4.0 - 7.0 4.0 - 7.0 

Nutrition modulation Yes Yes Yes No No Yes No No 

Insulin delivery Bolus Infusion Bolus + 
infusion Infusion Infusion Infusion Infusion Infusion 

BG measurement frequency 1 - 2 hours 1 -2 hours 1 - 3 hours 1 - 2 hours 2 - 3 hours 1 - 3 hours 2 hours 2 - 4 hours 
Primary BG measurement 
device Glucometer Glucometer Glucometer Glucometer 

and blood-gas Blood-gas Glucometer Blood-gas Blood-gas 

User interface Paper-based Paper-based Tablet-based Computer-
based 

Computer-
based Tablet-based Computer-

based 
Computer-

based 

Control results:         
Average control duration 121 hours 91 hours 149 hours 24 hours 24 hours 83 hours 24 hours 117 hours 

BG in target range 59.1% 42.2% 83.9% 54.2% 54.9% 75.6% 40.9% 53.7% 

# patients < 2.2 mmol/L 8 0 0 0 0 1 0 2 

BG below target 2.8% 1.9% 3.8% 0.5% 3.3% 4.5% 0.9% 4.0% 

BG median (mmol/L) 5.7 6.3 6.1 7.6 7.4 6.1 7.4 6.6 

BG IQR (mmol/L) [5.0 - 6.4] [5.5 - 7.5] [5.5 - 6.8] [6.8 - 8.8] [6.5 - 8.4] [5.4 - 7.4] [6.2 - 9.4] [5.5 - 8.2] 

Insulin median [IQR] (U/hr) 2.6  
[2.1 – 3.3] 

3.0 
[2.2 – 5.0] 

3.0 
[1.5 - 4.5] 

1.5 
[0.5 - 3.4] 

2.0 
[1.0 - 2.5] 

2.3 
[1.0 - 4.3] 

0.058 
U/kg/hr 

0.033 
U/kg/hr 

Carb intake median [IQR] 
(g/hour) 

3.9 
[2.3 – 5.2] 

7.4 
[4.4 – 9.7] 

4.9 
[0.0 - 6.9] 

7.4 
[2.0 - 11.2] 

0.0 
[0.0 - 5.4] 

6.6 
[4.7 - 8.6] 

8.2 
mg/kg/min 

7.9 
mg/kg/min 

 



 
 

     

 

knowledge of how SI varies between patients and temporally 
is important for real-time BG control. Not only identifying 
patients that may be more resistant to insulin, but also 
tracking changes in response to insulin over time may be 
important (Le Compte et al., 2011b). 

SI may cover not only physical response, but other artefacts 
such as modelling error (Chase et al., 2010), measurement 
device noise and pump errors. Thus even though SI may be 
numerically evaluated, it is often interpreted cautiously and 
limits are often placed on controller actions to limit potential 
harm if a rapid SI change was due to noise rather than a 
treatment or physiological change (Le Compte et al., 2011a). 
Frequent SI re-evaluation could also limit the impact of 
spurious measurements, particularly when used with 
glucometers (Lonergan et al., 2006a). Often strategies for 
dealing with missing, imprecise, error-prone information is a 
major component of creating a reliable system for a typical 
ICU. Thus identification of state is influenced by device 
noise and suggests that practical controllers should be aware 
of such limitations during development.  

Differences in patient demographics influence observed 
evolution of SI. Adults and neonates show marked 
differences in the relationship between inter- vs intra- 
variability (Le Compte et al., 2011b), suggesting neonates 
show larger difference between patients, but lower variability 
within individuals compared to adults. Data from a single 
unit of the European Glucontrol study suggested similarities 
between Belgian and New Zealand patients (Suhaimi et al., 
2010), and subsequent analysis of BG control trials showed 
modest improvements could be obtained by using stochastic 
model customised to a specific target group (Penning et al., 
2011).  

Thus, incorporating more baseline patient information may 
potentially improve forecasting by segregating patients into 
groups that show similar responses. Cardiac surgery patients 
are a subgroup of ICU population that have shown benefit of 
TGC. This population was also observed to have a tendency 
towards lower and more variable SI as a cohort compared to 
patients with other medical diagnoses, as shown in Fig. 1. 

However this a-priori information is not completely specific, 
and a particular cardiac surgery patient may easily oppose the 
trend and exhibit higher and/or less variable SI than a typical 
ICU patient. Diabetic patients also show similar trends during 
initial ICU stay as presented in Fig 2. However, such baseline 
information may not be completely reliable as it is estimated 
the prevalence of undiagnosed diabetes is significant (Cowie 
et al., 2006). 

Figure 3 shows SI distributions grouped by several major 
diagnosis categories. Although some trends and shifts are 
numerically evident, there is also large overlap with little 
separation between groups. Knowledge of diagnosis, for 
example, could instruct a controller of a tendency towards 
lower SI, but would not be strong at this stage to solely drive 
therapy. Thus, this reinforces the utility of timely re-
evaluation of SI for tracking patient response.  

  

3. CLINICAL THERAPY TARGETS 

The range of clinical BG targets amongst the studies shown 
in Table I reflects the range of targets encountered between 
units and changing opinions of BG control over time. The 
seminal 2001 Leuven study (Van den Berghe et al., 2001) 
encouraged many units to adopt low tight BG targets of 
around 4 – 6 mmol/L. Later studies that showed high degrees 
of hypoglycemia tempered this approach, and the latest ADA 
recommendations called for BG targets of 7.8-10.0 mmol/L 
(Moghissi et al., 2009). 

Neonatal units also have a wide variation in desired glucose 
targets (Alsweiler et al., 2007), and the 4.0 – 7.0 mmol/L 
target chosen in the studies presented in Table 1 reflects adult 
targets in the absence of detailed studies in the neonatal 
population. 

Computerized model-based approaches such as STAR offer 
the ability to alter targets in real-time, whereas paper-based 
approaches such as SPRINT are inflexible in this regard. 
Differences in patient response over the first days in ICU 
may dictate different target ranges per day. Additionally, new 
evidence suggesting diabetic patients may show greater 
benefit from higher BG targets compared to non-diabetic 
patients (Egi et al., 2011) suggests BG targets may also 
become patient-specific. Thus, it is possible control schemes 
need to be flexible with respect to chosen BG target to handle 

 
 
Fig 1. Cumulative Density Functions (CDFs) of cohort SI evolution over 
first four days of ICU stay for cardiac-surgery patients compared to other 
diagnoses. Cardiac surgery patients initially show lower SI with 
differences decreasing over subsequent days. 
 

 
 
Fig 2. Cumulative Density Functions (CDFs) of cohort SI evolution over 
first four days of ICU stay for diagnosed diabetic patients (left panel) 
compared to non-diagnosed diabetics (right panel).  
 



 
 

     

 

these clinical scenarios. 

Similarly, nutritional targets in ICU are also under debate 
(Peake et al., 2011). STAR and SPRINT recommend 
reducing nutritional intake in cases of excessive 
hyperglycemia and/or patients with particularly low 
sensitivity to insulin. Whether rigorously meeting daily 
caloric goals is required in ICU patients is presently 
debatable, with some studies showing improved outcomes 
with mildly hypo-caloric feeding regimens (Krishnan et al., 
2003). Furthermore, it is not yet known whether maintaining 
caloric intake or regulated glycemia is the stronger driver for 
improved outcomes in cases where insulin resistance is very 
high. Thus, control schemes are likely required to be adapted 
over time as results from future studies influence ICU feeding 
practices. 

Furthermore, even amongst units presented in Table I that 
modulated nutrition there was substantial variation in total 
carbohydrates administered and reflects local goal-feeding 
practices. Christchurch ICU tends to prescribe a low-
carbohydrate enteral feeding formula for hyperglycaemic 
patients, whereas Gyula Hospital uses higher-carbohydrate 
formulas and makes extensive use of parenteral feeding 
routes. 

 

4. DEVICE IMPLEMENTATION 

The model-based studies presented in Table I were 
implemented on three platforms. SPRINT is a paper-based 
design that imitates model-based control (Lonergan et al., 
2006b). Its low-cost format is readily implementable and has 
been used continuously since 2005. STAR is implemented 
either on desktop/laptop hardware or in tablet-based form 
(Evans et al., 2011), depending on the computing 
requirements of the target clinical unit. 

Flexibility around measurement timing, BG targets, 
nutritional targets, baseline patient data and insulin 
administration choices require balance between flexibility 
allowed to nursing staff and ability to meet clinical 
requirements. Accurate data entry is crucial to accurate 
control. Mistyped entries can be a significant source of error, 
and tablet versions of STAR utilize a custom-designed 
keypads, shown in Fig 4, that have been shown to reduce 
incidence of mis-entered information (Ward et al., 2012). 
Increased communication with hospital information systems 

 
 
Fig 3. Stochastic model fits separated by clinical diagnostic category. Clockwise from top-left: whole-cohort, cardiovascular (all), cardiovascular (non-
surgical), respiratory, gastrointestinal, cardiovascular (surgical).  
 

 
 
Fig 4. Numerical input methods tested to evaluate speed and accuracy 
performance when applied to tablet-based BG control systems. 



 
 

     

 

and individual devices may also assist in limiting the amount 
of data entry and improve accuracy. 

Finally, the BG control system needs to be trusted by 
frontline clinical staff, or recommendations may be 
overridden. The paper-based design of SPRINT is relatively 
transparent in that all possible insulin/nutrition combinations 
can be seen directly. More complex systems such as STAR 
typically hide many mathematical complexities involved in 
generating recommendations. Thus, it is important to 
communicate concepts such as sensitivity to insulin and 
model-based BG forecasting to staff to build awareness of 
motivation behind sometimes unintuitive therapy choices, 
and prevent protocol violations which can hamper studies 
(Preiser et al., 2009). For example, STAR graphically 
presents model-generate BG forecast bands to the user to 
communicate the expected outcome of a therapy selection, 
and the uncertainties in BG prediction due to patient 
condition. 

4. CONCLUSIONS 

The experience of the research work presented here is aimed 
at decision support systems. However, many of the issues 
still hold for full closed loop control systems. Patient 
variation in response to insulin must be handled by any 
control system. Although there are links between baseline 
conditions and SI evolution, few so far have appeared 
specific enough to strongly drive controller behaviour. Thus, 
re-evaluating SI appears to be important for safe control. 

Targets for BG and nutrition differ between units, are may 
potentially change over time as further research is performed. 
Thus, control is likely required to be dynamic and 
personalized, and thus require flexibility in control laws. 
Finally, integrating with end users requires limits on 
complexity to assist for implementation including training, 
limiting data entry errors and utilizing available equipment in 
the ICU. 
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