
A
Performance Study

of the
Acorn RISC Machine

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science in Computer Science

in the

University of Canterbury

by

David Vivian Jaggar

University of Canterbury

1990

Abstract

The design decisions behind the development of the Acorn RISC Machine

(ARM) are investigated, by implementing the architecture with a software

emulator, to record the effectiveness of the unusual architectural features

that make the ARM architecture unique.

The adaption of an existing compiler construction tool (the Amsterdam

Compiler Kit) has demonstrated that an optimising compiler can exploit

the RISC architecture to maximize CPU performance.

By compiling high level language algorithms, a complete picture of the

effectiveness of the ARM architecture to support high performance

computing is formed.

-2-

Contents

Abstract ... 2

Contents ... 3

Figures and Tables .. 5

Computer Design .. 7

The Central Processing Unit ... 7

The Instruction Set .. 8

Microcode .. 12

Registers ... 13

The Memory .. 14

Advancing Technology ... 21

RISC Architectures ... 24

Improving Performance ... 26

Cycles per Instruction .. 26

Time per Cycle ... 29

Instructions per Task ... 30

RISC Development ... 32

Commercial RISC Designs ... 35

Other Commercial RISC Architectures 43

The Acorn RISC Machine .. 45

Architecture Characteristics ... 48

The Impact on Performance .. 00

Evaluating an architecture .. 63

Computer Software ... 64:

The Operating System .. 64:

Compilers ... 65

Application Programs .. 74

An Optimising Compiler for ARM .. 76

-3-

Compiler Building Tools ... 76

EM code and the Code Generator Generator 00

Global and Peephole Optimisers .. 89

The Assembler and Linker .. 89

The After-Burner Optimiser ... 00

Register Allocation ... 92

Compiler Validation ... 95

Evaluating an Architecture .. 96

Architectural Features ... 96

Measuring the Quality of an Architecture 00

Architectural Emulation ... 100

Emulator Validation and Performance 103

The Quality of the ARM Architecture ... 105

Compiler Performance .. 106

Architecture Performance ... 109

Instruction Usage ... 110

Branch and Conditional Instruction Utilisation 115

Memory Accessing Instructions ... 118

Cache Effectiveness ... 119

Improving the ARM architecture ... 120

Conclusion .. 127

Acknowledgements .. 130

Bibliography .. 131

ARM 3 Instruction Set Format .. 136

EM Instruction Set ... 139

Floating Point Accelerator Instruction Set 145

-4-

Figures and Tables

Figure 1: A Simple CPU .. 8

Figure 2: An Instruction Pipeline .. 'Z7

Figure 3: SPARC Register Window Layout .. 38

Figure 4: ARM Register Layout ... 52

Figure 5: ARM Shift Operations ... 53

Figure 6: Compiler Stages ... fJ7

Figure 7: ARM Signed Divide Routine .. f57

Figure 8: Emulator Execution Breakdown .. 104

Figure 9: Acorn and ACK Compiler Performance 107

Figure 10: Relative Instruction Usage ... 111

Figure 11: Data Processing Instructions .. 113

Figure 12: Data Processing Operands .. 114

Figure 13: Data Processing Immediate Operands 116

Figure 14: Conditional Non-Branch Instructions 117

Figure 15: Addressing Modes ... 119

Figure 16: Cache Strategies .. 12A

Table 1: A Simple Instruction Set ... 10

Table 2: Code Size for CISC (MC68020) and RISC (SPARC) 31

Table 3: Relative Frequency of High Level Language Statements 36

Table 4: ARM Instruction Set .. 46

Table 5: Architectural Benchmarks .. 105

-5-

To my Mother and Father

-6-

Chapter 1
Computer Design

The performance of a computer system is measured by the time that it

takes to execute programs, the shorter the elapsed time the higher the

performance rating. To maximise the performance a designer must find

ways to match the performance of each component in the computer, to

yield a balanced system. As technology changes and new discoveries are

made, different parts of a computer become the performance bottle-neck.

The architecture of a computer defines the major attributes of the design.

The number of registers, their layout, the instructions and addressing

modes that the computer understands are all part of the architecture,

while the number of clock cycles taken to execute each instruction, the

type of transistor logic used to build the CPU, and the layout of memory

are part of the implementation.

The Central Processing Unit

The Central Processing Unit (CPU), as shown in Figure 1, is the part of

the computer that executes instructions. The CPU is composed of a

number of specialized functional units (for example the Arithmetic Logic

Unit, or ALU). These functional units are controlled by the Instruction

Decoder, which activates the necessary sections of each unit to carry out

the operation specified by each instruction. Each functional unit is

connected by data paths, along which data, parts of decoded instructions

and internal control information flows.

-7-

A Bus BBus

Figure 1: A Simple CPU

The Instruction Set

The instruction set of a computer (the machine code) is the language that

is used to directly program the CPU. The instruction sets of computers are

significant factors in the overall price/performance of the machine. Each

instruction of the CPU must be implemented using digital logic that must

be custom designed (using "microprogramming" to replace some logic by

sacrificing performance is discussed later). This "custom silicon" is

extremely labour intensive to construct, so that a large and/or complex

instruction set is very expensive to implement in hardware. Emulating

some instructions with software is less expensive, but lowers the

performance of the computer, due to the inefficiency of using

combinations of the existing instructions to emulate missing instructions.

Whilst machines exist whose instruction set is tailored for one specific

high level language, such a design would be inappropriate for a general

-8-

purpose microcomputer. Table 1 illustrates a simple instruction set. An

instruction set must be able to efficiently support the many unique

features specific to different high level languages, although programming

languages have major features in common -

i) arithmetic operations for integer and floating point data.

An instruction set will need operations to move data to and from the

memory and registers, and be able to perform some simple

arithmetic on that data. Integer addition and subtraction

instructions are found in the simplest of CPUs, while multiply and

divide are quite common in more complex architectures. The results

of such instructions usually update the processor's condition flags: a

negative result will set the negative flag, a zero result will set the zero

flag, a carry or borrow from additions and subtractions will set the

carry flag, and an overflow will set an overflow flag. Floating Point

operations are usually carried out in a totally separate processor, the

Floating Point Unit (FPU), but the functions it performs are similar

to the integer unit.

ii) operations on Boolean data.

Boolean values, arrays of Boolean values, and sets require bit-wise

logical operators like And, Or and Exclusive Or. The And operator is

used to clear a bit, Or is used to set a bit, and Exclusive Or is used to

toggle a bit. Operations on bit fields such as Not, Left Shift, Right

Shift and Rotate can be used to build values for comparison with

Boolean data.

-9-

Instruction Mnemonic

Add ADD

Subtract SUB

Logical AND AND

Logical OR OR

Logical EOR EOR

Logical NOT NOT

Logical Shift Left LSL

Logical Shift Right LSR

Rotate ROT

Arithmetic Shift Right ASR

Compare CMP

Move MOV

Multiply MULT

Divide DIV

Jump JMP

Procedure Call CALL

Procedure Return RET

Conditional Branch Bee

Where : Dest , Srcl and Src2 are registers or memory addresses

PC is the program counter

cc is a condition code

offset is an address offset

Table 1: A Simple Instruction Set

Operation

Dest := Srcl + Scr2

Dest := Srcl- Src2

Dest := Srcl AND Src2

Dest := Srcl OR Src2

Dest := Srcl EOR Src2

Dest := NOT Srcl

Dest := Srcl * 2Src2

Dest := abs(Srcl I 2Src2)

Dest := Src 1 Rotated Src2 bits

Dest := Srcl I 2

Srcl- Src2

Dest := Srcl

Dest := Srcl * Src2

Dest := Srcl I Src2

PC:= Dest

Dest := PC, PC := Dest

PC:= Dest

IF cc PC:=PC+offset

iii) support for the conditional execution of instructions depending on

some previous condition.

A compare instruction can be used to compare two pieces of data. The

condition flags are usually set to reflect the result of the last compare

instruction, the negative flag indicating which operand was the

larger and zero flag if they were equal. A branch instruction will

jump to a different part of the program depending on the state of one

- 10-

or more condition flags, for example "Branch on Greater Than or

Equal to". Many architectures combine the compare and branch

instructions, as they are usually used together. These instruction are

used to implement IF statements, conditional loops (FOR, WHILE etc.)

and CASE type statements.

iv) jump instructions to change the flow of execution.

High level language constructs like infinite loops, premature loop

terminators and GOTO statements require a Jump instruction to

unconditionally alter the value held in the program counter.

v) constructs to implement procedure calls.

By storing the current value of the program counter, and using a

jump instruction, a program can execute a procedure and then

continue execution just after the point of call by jumping back to the

value in the stored program counter. If the return address is pushed

onto a stack, then procedure calls can be nested, and procedure

recursion is possible.

vi) addressing modes to access data structures held in memory.

Data structures like Pascal's arrays and records require the

processor to be able to load data to and from an address determined by

adding an offset to a base address. The base address holds the

address of the start of the array or record and the offset holds the

distance of the required element from the beginning. These same

addressing modes can be used to access data held in the stack frame

of a procedure held on the stack.

- 11-

Of course, all programming languages have their own characteristic

features, and a general purpose architecture must cater for these. The

microprocessors designed in the early 1980's added many instructions

and addressing modes to the simple instruction set shown in Table 1 to

add hardware support for the features of many high level languages. This

has the unfortunate side effect that some instructions will be completely

useless in some situations, effectively a waste of "silicon real estate" on the

CPU chip.

Microcode

The amount of custom logic required to directly implement a very large

instruction set to support high level languages is too large to fit on a single

chip. Only implementing a small number of instructions in hardware

and emulating all others in software is inefficient, due to the overheads

involved in the trap handler for unimplemented instructions (each

unimplemented instruction must be fetched from memory, decoded in

software, and its action emulated with other instructions). Microcode is a

very low level instruction format that is suitable for complete

implementation in hardware, and is tailored for the efficient emulation of

machine code instructions. Each machine code instruction is executed by

running a sequence of microcode instructions (called a micro program).

The microcode sequences are stored in a Read Only Memory (ROM) that is

part of the CPU. The uniform nature of a ROM makes much more

efficient use of logic than the custom logic used in a functional unit, so

that the entire machine code instruction set can be implemented.

Microcode is extremely tedious to write, because the program must obey

stringent timing restrictions when accessing each functional unit of the

CPU. Thus the microcode is usually fixed at the time of manufacture, and

- 12-

the CPU can be programmed using the higher level machine code.

Different implementations of the same architectures can be produced by

adding extra functional units to the CPU to eliminate the need for certain

microcode sequences. Microcoding is a price/performance compromise -

another level of interpretation has been added to the CPU which, although

it reduces the cost and makes more efficient use of chip space, also lowers

the performance compared to a CPU with a complex "hard-wired"

instruction set.

Registers

The program data is usually kept in registers in the CPU while it is being

referenced frequently, so that access to it is as fast as possible. The ALU

and registers are connected by data paths, called buses, which carry 32

bits of information in parallel in a 32 bit computer. The buses connect to

the register file via a port. The register file will need two read ports and a

write port if an instruction like "add the contents of two registers and store

the result in a third register" is to be executed in a single clock cycle. The

registers are arranged in a bank (or file), which usually consists of a

small, fast Static Random Access Memory (SRAM). The actual number of

registers is usually limited by the number of bits required in each

instruction word to encode the register numbers and the amount of CPU

chip area that is available. Not all CPU's have registers (data is accessed

directly in memory [Ditz87]), some have as many as 192 [AMD87, Lehr89],

but typical numbers are 16 and 32.

- 13-

The Memory

The memory of the computer stores instructions and data. Several

separate memory chips are attached to one memory controller to provide a

homogeneous memory bank. The CPU is connected to a memory

controller via two buses, the data bus (which carries data to and from the

memory) and the address bus (which dictates the required memory

address). The memory controller is responsible for activating the correct

memory chip(s) for the memory address required.

Size and speed of memory are major influences on the cost and the

execution speed of the computer. The size of the memory is directly

proportional to the cost; pay twice as much and get twice as much.

Modern microcomputer applications need at least 1 MegaByte of main

memory, larger machines have 8 to 16 MegaBytes. The speed of the

memory is more subtly related to the cost, being dependent on two factors-

(i) Latency.

The time taken for the memory to return the first word of data.

(ii) Bandwidth.

The rate at which data can be transferred to the CPU, once the initial

flow is established.

The execution speed of a program is dependent on both these factors. The

performance of a program that consists entirely of jump or branch

instructions and data accesses to non contiguous memory locations will be

limited by the memory latency, because after every branch or jump the

memory must restart the flow from a new location, while the performance

of a program that has no branch or jump instructions and contiguous

- 14-

data accesses will be limited by the memory bandwidth. Of course a real

program will have some branch or jump instructions and some random

and some contiguous data memory accesses, so the demand on the

memory will be between these two extremes. There are several ways of

increasing memory access speed -

(i) Faster Memory Devices.

Using faster memory chips will increase the bandwidth and reduce

the latency. Dynamic Random Access Memory (DRAM) can deliver

up to about 6 Million random accesses per second. To gain more

speed than this, Static Random Access Memory (SRAM), which can

provide 100 Million accesses per second, must be used. The price

difference between DRAM and SRAM makes it too expensive to build

a microcomputer with a memory made only of SRAM; a compromise

is discussed below, which utilises both SRAM (for speed) and DRAM

(for its low cost) to implement a fast, relatively inexpensive memory.

(ii) Wider buses.

Multiple memory devices connected in parallel, each connected to the

same memory controller, increases the memory bandwidth but does

not alter the latency. A bus that is twice as wide will deliver nearly

twice the usable performance despite the wastage that occurs due to

operations involving data objects much smaller than the bus size (for

example, byte operations on a 16 bit bus leaves the bus 50% unused,

whilst on a 32 bit bus the bus is 75% unused). Unfortunately

increasing the size of a memory bus beyond 32 bits is currently too

expensive to be used in a low cost micro-computer.

- 15-

(iii) Interleaved memory banks.

Multiple (interleaved) memory devices connected in parallel to

separate memory controllers allow one bank of memory to supply

data to the processor while the other(s) are recovering from

supplying previous data. This increases both the bandwidth (because

separate banks have more time to recover between accesses) and

reduces the latency (because on average a memory access will be to a

memory bank that has already had some recovery time), but the

added cost of a separate memory controller for each bank of memory

may be prohibitive.

(iv) Fast access modes.

By exploiting the physical layout of DRAM consecutive memory

accesses to sequential memory locations can be significantly faster

than completely random ones, without increasing the price of each

memory device. These type of DRAMs are known as Page Mode

DRAMs or Static Column DRAMs. This technique will increase the

bandwidth of the memory, but not alter latency. The cost of this

implementation is merely adding an extra control line from the CPU

to the memory system to indicate that the current memory reference

is in sequence with the last.

v) Harvard architecture.

Rather than storing both instruction and data in a single memory (a

von Neumann architecture), there may be two physically separate

memories for instructions and data- a Harvard architecture, to

double the memory bandwidth. Of course a Harvard architecture will

require two address buses and two data buses, but it will be possible to

read the next instruction and perform a load or store operation in

- 16-

parallel. This extra performance comes with the cost of building a

computer with twice as many bus lines, which is extremely

expensive.

vi) Cache memory.

Because programs tend to reference the same areas of memory

repeatedly (while executing loops and accessing data structures in

memory) it will be more efficient to store frequently used instructions

and data temporarily in a small, very fast SRAM, rather like holding

data in CPU registers while it is being accessed, and use less

expensive DRAM for the rest of the memory. Every time data is

loaded from DRAM it is stored in the SRAM "cache" as well as being

passed to the CPU. Then if the CPU requests this same data from the

memory again, it can be supplied much sooner from the cache,

allowing the CPU to maintain its maximum instruction and data

throughput.

A cache "hit" occurs when the requested data currently resides in the

cache, a cache "miss" occurs when requested data does not reside

there. The performance of a cache is measured by its hit ratio - the

proportion of cache hits in relation to the total number of memory

references. The hit ratio of a cache is dependent on various design

parameters, for instance the algorithm used to decide where to put

new data in the cache. The following algorithms are suitable for a

fast implementation in hardware-

a) Direct Mapped Cache.

This is the simplest system: low order bits of the main memory

address are used to determine a unique location in the cache

- 17-

memory for the data. Unfortunately if a program references two

blocks of memory that have the same low order address bits, the

cache will be repeatedly filled with new data (or instructions)

from alternate memory blocks, continually overwriting data that

will be required again.

b) Dual Set Associative Cache.

To ease the problem with a direct mapped cache, two locations

can be reserved for each low order address bit combination, and

new data will be placed in the Least Recently Used (LRU) location.

A single bit is enough to record the last location used. Now three

separate memory references with the same low order address bits

will be required to spoil the cache's efficiency; this situation is

very rare.

c) Multi Set Associative Cache.

The associativity of the cache may be increased to four or further,

but the LRU algorithm for deciding the position of new data

becomes much more complex. The associativity is usually a

power of two because this makes the most efficient use of LRU

hardware.

d) Fully Associative Cache.

Now each item of data can reside anywhere in the cache, and

corresponding addresses must be stored to identify the data. A

content addressable memory is used to store the data. This special

memory instantaneously returns the data associated with an

identifier (in this case the data associated with a memory

address). A disadvantage of this scheme is the need for every

- 18-

piece of data in the cache to have its associated address stored

with it, using up valuable hardware space that could have been

used to make a larger, less complex cache. The solution is to store

the contents of a number of successive locations with a single

address, called a cache line. When a cache miss occurs, a

complete cache line is fetched from the main memory. Although

this sounds theoretically inefficient, in practice sequential cache

locations are likely to be accessed together anyway, thus caching

an entire line at once allows for the utilisation of the page mode

access feature of the DRAM main memory. Using an LRU

algorithm to find a location for new data in a fully associative

cache is very complex to implement in hardware, and has a

pathologically worst case when the number of items to be cached

is just bigger than the size of the cache and the items are always

accessed in the same order (such as the instructions in a loop or

the elements of an array)- the LRU algorithm always replaces

oldest (soon to be needed) data in the cache with the new data, so

the cache always misses. An alternate to LRU is a random

replacement scheme. The value from a fast counter is used to

provide a pseudo random location for new data. This scheme is

easy to implement, and works as well as LRU whilst avoiding

LRU's pathological case.

The cache can be used for virtual or physical memories (or even

separate caches for each), and each alternative has disadvantages. A

virtual memory (or "virtually mapped") cache will need to have some

entries invalidated every time a new page translation is calculated,

and a physical memory (or "physically mapped") cache will be slowed

because it must wait for the virtual to physical address translation

- 19-

before it can look up any data. Both these types of cache are common

in commercial computers.

There are two ways of maintaining the consistency of data between

the cache and the main memory when a memory store operation is

executed-

a) Write through.

The obvious approach is to write data to the cache and main

memory at the same time. Unfortunately this simple scheme

means that main memory will be referenced by every store

operation, which is contrary to the caching principle.

b) Write back.

Data can be just written to the cache and then copied to memory if

the cache entry is ever to be overwritten again. This strategy will

avoid memory references between successive writes to the same

memory address, but requires a "dirty" flag for each cache entry

to indicate if the data needs to be saved back to memory before the

location is reused.

A "write buffer" can be used in with either strategy to allow the

processor to continue instead of waiting for the data to be written to

main memory.

A cache memory is particularly useful for a Harvard architecture.

Instead of having two separate main memories for instructions and

data, two caches are used, one for instructions, the other for data.

Separate address and data buses are still required for instructions

-20-

and data, but they only connect to their associated caches, because

both caches share a common address and data bus to access a

common main memory. The main memory only needs enough

bandwidth to supply data for cache misses, rather than all CPU

traffic. For a more complete description of cache principles see

[Smit82]

It is possible to combine two or more of these implementation techniques

to achieve the performance required for a microcomputer memory

system.

Advancing Technology

The microprocessors designed in the early 1980's tended to have large

number of complex instructions and addressing modes, intended to

provide similar computational power with a single chip CPU as the

mainframe computers of the 1970's achieved with their multiple chip (and

usually multiple circuit board) CPU s. This level of micro-processor

complexity was made possible by the advent of Very Large Scale

Integration (VLSI), and the resulting computers using these micro­

processors have become known as Complex Instruction Set Computers

(CISCs). This complexity was used to alleviate several problems-

i) Slow core memory.

The magnetic core memory used for main memory was very slow

compared to the speed of access to the on-chip microcode ROM,

causing the execution time of programs to be proportional to the

number of instructions in the program. Thus more complex

-21-

instructions were implemented with microcode to replace sequences

of simple instructions, to avoid repeated accesses to core memory.

ii) Compact assembly language.

Complex instructions aided assembly language programmers by

replacing common sequences of instructions with a single

instruction. As software was becoming a significant factor in the cost

of a computer system, and a large proportion of software was written

in assembly code to reap the maximum performance of the machine,

any such aid given to assembly language programmers would be

useful.

iii) High level language support.

Complex instructions and addressing modes were thought to help

compiler builders by closing the semantic gap between high level

languages and assembly language. Designers supported high level

language features with fast hardware to improve performance.

Making high level languages efficient was also important to help

keep software costs down.

iv) Good compiler targets.

These complex designs had few registers, because compilers for

stack or memory to memory architectures were far easier to

construct. Registers were difficult to allocate optimally for local

variable use, so were mainly used as temporary storage in

expression evaluation, and as pointers to data structures.

v) Easily adaptable.

Microcode was an efficient way to utilise the advancing technology

-22-

used to build a CPU. As more transistors could be placed on a chip,

more microcode could easily be added to build a bigger and more

complex instruction set, and more dedicated hardware could be

added to speed up microcode instructions.

The Digital Equipment VAX architecture is a good example of an

elaborate instruction set, with instructions for polynomial evaluation,

queue manipulation and cyclic redundancy checks. The Intel 80x86 series

microprocessors are some of the most complex, having instructions to

operate on entire strings, complex looping instructions and table look up

instructions. The Motorola 680x0 series has instructions to insert and

extract bit fields to and from a word, to search words for a set or clear bit,

and complex module calling instructions.

-23-

Chapter2
RISC Architectures

There are several deficiencies with the Complex Instruction Set approach

to improving computer performance-

i) Compilers cannot utilise the complexity.

Modern compilers have extreme difficulty applying complex

instructions to high level languages. Complex instructions rarely

perform the exact task required by a high level language: if an

instruction does not quite do what is required then its action must be

modified with other instructions, or completely replaced with new

instructions. An instruction that does more than is required is

wasting execution time doing wasted work. In tracing compiled code

executing on a complex architecture, researchers noticed that the

same twenty percent of instructions accounted for eighty percent of

all executed instructions, and a further ten percent of instructions

accounted for almost all instructions executed. The remainder of the

instruction set was unused and therefore unnecessary. [Sun87a].

ii) Complexity implies poor performance.

Complex instructions take a long time to load from core memory and

take a long time to decode. Because of the variable lengths of complex

instructions, each must be partially decoded before it can be executed.

This complexity makes it extremely difficult to have a complex

instruction loaded and decoded, ready for execution after a sequence

of fast instructions, so the ALU must wait for the complex

instruction to be loaded and decoded. Even worse, the complex

instructions add extra length to the main execution data path which

-24-

decreases the execution speed of all instructions. Thus an instruction

which lengthens a data path by ten percent must increase the

execution speed of programs by more than ten percent to be justified.

iii) Memory to memory architectures are inefficient.

Although it is difficult to write compilers for register based

architectures, registers are very efficient for the storage of variables

and procedure parameter values. Memory to memory models access

memory too often to be as efficient. Stack based machines can be

made efficient, but a considerable amount of hardware is still

required to approach the efficiency of registers.

iv) Assembly language is a slow programming environment.

The compiler that can produce good machine code from a high level

language will replace the assembly language programmer, because

writing programs in assembly language is too slow to use for most

programming tasks. A good architecture should make it possible for

a good optimising compiler to produce code of comparable quality to

assembly language programmers.

v) Long design time.

Complex architectures are difficult to design, take a long time to

verify and manufacture, and therefore cannot be designed to take

advantage of the latest technological advances.

-25-

hnproving Performance

The time it takes for a computer to perform a task is a product of three

factors-

Time per Task = C x T x I

where C is the cycles per instruction

T is the time per cycle

I is the instructions per task

Improving any of these factors will improve performance. The first two

factors tend to be complementary - an architecture may have a long cycle

time to accommodate complex instructions, or it may have multiple

(shorter) cycles per instruction.

Complex Instruction Set Computers attempt to minimise the time per

task by minimising the instructions per task, by making each instruction

do a lot of work. In practice this lengthens either or both of the cycles per

instruction and the time per cycle in greater proportion, so that

performance suffers as a result.

Reduced Instruction Set Computers (RISCs) follow new computer

architecture and implementation design disciplines -minimising the

number of cycles per instruction and decreasing the cycle time to increase

performance.

Cycles per Instruction

RISCs achieve a short cycle time by implementing a very simple, but very

fast instruction set. This simple instruction set allows several

instructions to be "pipelined" - several instructions are at different stages

-26-

of execution at one time, to maximise the usage of different functional

units of the processor. Figure 2 shows a pipeline with five stages,

instruction load, decode, register read, ALU operation, register write.

Instructions still require several cycles to be executed, but because each

stage is done in parallel with other instructions at a different stage, a

throughput approaching one instruction per cycle can be maintained.

Instruction 1

Instruction 2

Instruction 3

•
•
• Time

Figure 2: An Instruction Pipeline

Data dependencies occur between each instruction in the pipeline because

an instruction can read from the registers before the previous instruction

has written its results. These dependencies are resolved by adding

forwarding logic to the CPU to by-pass the register file, routing the result

value directly from one instruction to the input value of the next

instruction.

The number of cycles each instruction adds to the total number of cycles

taken to execute a program is potentially reduced by the number of stages

in the pipeline (called the pipeline depth). Fulfilling this potential requires

the pipeline be always filled with instructions, a task that is very difficult

unless all instructions are the same (encoded) length, and take

approximately the same amount of time to execute. So RISC instructions

-27-

are always one (usually thirty two bit) word long, and most require only a

single cycle AL U operation. A CISC architecture cannot fully achieve

either of these goals: its complex instructions are impossible to encode

using the same number of bits or to execute in the same time period (cycle

length). The data paths in a RISC architecture need only carry word sized

objects around the CPU, a CISC architecture must be able to move its

multi word instructions around the CPU, which adds cost and

complexity.

Instructions that change the value of the program counter (branches,

jumps, traps, procedure calls and procedure returns) make it difficult to

keep the instruction pipeline full. To avoid stalling the CPU while new

instructions are loaded from the new memory location, instructions like

branch are usually implemented with a delayed action: the instruction

immediately after the branch instruction (said to be in the branch delay

slot) is always executed after the branch instruction is executed. The

compiler can often find an instruction to put in the delay slot to do useful

work, if it cannot a NOP (No-OPeration) instruction must be inserted.

Instructions that access memory require special attention for two

reasons. Firstly a full memory addressing mode takes many instruction

bits to encode - too many to specify each operand of every thirty-two bit

instruction, so a "load/store" architecture is implemented: only the load

and store instructions can access memory; all other instruction only

access data that is held in registers. The second problem is that the data

from a load instruction will not be available to all subsequent instructions,

due to the slow access speed of main memory. The solution is to provide

delayed load instructions, the instruction after the load (in the load delay

slot) cannot access the register into which the load instruction will place

-28-

the data. Again the compiler attempts to find a suitable instruction for the

load delay slot, if this is not possible a NOP must be inserted.

Time per Cycle

The length of a single machine cycle is determined by several factors.

Firstly the instruction decode time is related to both the number of

instructions in the instruction set and the number of instruction formats

supported. Clearly a CISC architecture will require a longer decode time

than a RISC architecture. Most RISC architectures have only a few levels

in their decode strategy: the instructions are first split into broad

"families" by examining a few key bits in each word, then each instruction

can be fully decoded. Complex addressing modes in CISC architectures

lengthen the decode time substantially, although the National 32x00 series

of processors have a very uniform instruction set, which results in a fast

instruction decode time. Other CISC architectures, such as the Motorola

680x0 and Intel 80x86 architectures have very complex instruction

formats, due to their backward compatibility with their respective

ancestors.

The second factor in the time per cycle is the instruction operation time.

RISC architecture instructions usually have a single cycle ALU stage, so

that the flow of instructions through the processor is not interupted.

Instructions that require more ALU work (such as integer multiply and

divide) are often set running in parallel with single cycle instructions.

CISC architectures have many multi-cycle instructions, which makes

efficient pipelining of instructions very difficult. Considerable amounts of

extra hardware are required to support data dependencies between

instructions (i.e. the result of one may be required for a source operand of

-29-

the next instruction), which uses precious chip space and lengthens

critical processor data paths.

The time needed to fetch instructions from main memory is the third

factor influencing the time per cycle, and is inversely proportional to the

memory bandwidth. Instruction memory latencies are only incurred by

instructions that alter value of the program counter, as new instructions

must be loaded from a new memory address. The techniques described in

Chapter 1 can be utilised to increase the memory bandwidth to decrease

its influence on the time per cycle. RISC architectures can load a new

instruction in every memory access, because all instructions are the same

length. CISC architectures require multiple memory accesses to load

multi word instructions, again making efficient pipeline management

much more complex.

The last factor in the time per cycle is caused by the basic architectural

complexity of an architecture. RISC designers can spend more time hand

optimising critical processor features such as the processor data path and

functional units. CISC architectures have a much longer design and

· implementation cycle, and hand optimising a complex architecture is a

task too large to be practicable.

Instructions per Task

Because of the simple instruction set, RISC architectures require more

instructions than CISC architectures to perform the same task. Table 2

illustrates the length of the machine code of fifteen UNIX utilities, for two

common architectures, a Motorola 68020 [Moto85] based Sun 3/60, and a

SPARC based SUN SPARCstation [Sun87b], using similar compiler

-30-

technology, and compiling for the same Operating System. The 68020

CISC architecture has quite compact machine code, the SP ARC

architecture is a good example of a RISC architecture.

SPARQ
Program MC68020 SPARC MC68020

awk 43856 50014 1.14
be 10314 12462 1.21
cmp 3000 3232 1.08
csh 91902 118138 1.29
diff 20752 25512 1.23
eqn 25726 29306 1.14
grep 7174 9394 1.31
Is 8608 10536 1.22
nroff 54826 71162 1.30
od 7232 8560 1.18
sort 12194 15658 1.28
tee 2800 2992 1.07
unpack 4936 6104 1.24
write 5302 6142 1.24
yacc 28909 37730 1.31

Table 2: Code Size for CISC (MC68020) and RISC (SP ARC)

The code expansion is not as great as might be first expected, because the

RISC architecture contains the twenty or thirty percent of instructions

that the compiler could generate for the CISC architecture, which almost

negates the code expansion which might be caused by having only simple

instructions. The expansion that does occur is due to the simple (low

information density) RISC instructions- to speed up the instruction

decode stage. In practice the performance loss caused by the code

expansion is outweighed by the performance gains made by decreasing

the cycle time and reducing the average number of cycles per instruction.

Optimising compilers also help to mitigate the code expansion in RISC

architectures, the simple instruction set means the code sequence for a

-31-

given high level language statement is much easier to generate,

compared to the complex alternatives a CISC may offer. The simple

instructions also offer better opportunities for optimisation, they only

perform the actions required, whereas CISC instructions often have

useless side effects. Simple instructions allow the compiler to re-order

code, to avoid data dependencies and remove code duplication, operations

which are of course impossible with fixed microcode sequences. A simple

architecture also shortens hardware development time, allowing RISC

implementations to utilise the latest hardware technology, and the

resulting implementations are much more likely to operate correctly

(unlike CISC machines which usually undergo several hardware

revisions). The compiler can be continually improved to fully utilise the

hardware.

In practice the effect of such streamlining of an architecture is a large

performance increase, with a lower hardware cost due to the short

development time, resulting in a significant decrease in the

price/performance ratio compared to CISC architectures.

RISC Development

In 1975 IBM began a project to "achieve significantly better

cost/performance for High Level Language programs than that attainable

by existing systems" [Radi82]. The 801 project had pioneering design goals

for a computer architecture, which now form the basis of RISC

architecture and implementation design decisions -

i) maximum utilisation of all sections of the CPU.

A three stage instruction pipeline was designed so that instructions

-32-

could take three cycles to execute: the first cycle was used to load the

instruction from memory, the next cycle to decode the instruction,

read the operands and perform the AL U operation, and the last cycle

to perform shift operations, write the result and set the processor

flags. Functions that needed a longer time to execute, for instance

integer multiplication and division, were handled with a primitive

step instruction. Several multiplication step instructions must be

executed sequentially to perform a complete multiplication. An

effective throughput of one instruction per cycle was realised.

ii) regular instruction format to simplify the decoding of instructions.

All instructions were made one word (four bytes) long and aligned on

a word boundary when stored in memory. Data objects were aligned

on a boundary equivalent to their size, bytes on a byte boundary,

halfwords on a halfword boundary etc.

iii) All instruction operands and results stored in registers.

Thirty two registers were used to hold as much data as possible

because accessing memory three times (two operands and a result)

in each instruction was too slow. A load/store architecture was

implemented. The destination register of a data processing

instruction was specified independently of its operand registers,

unlike earlier architectures which placed the result back into an

operand register.

iv) A fast memory system to supply a new instruction every cycle.

Research showed thirty percent of all executed instructions were

loads or stores, and because a new instruction was required in every

cycle, a Harvard architecture with separate caches connected to a

-33-

common memory was used to provide the required memory

bandwidth. The cache had a 32 byte line and a write-back strategy.

v) Simple but fast addressing modes.

Only two addressing modes were provided, base register plus

immediate index and base register plus register index. The result of

the base plus index calculation could be stored back into the base

register after each memory access, providing an "auto-increment"

facility. Because one cycle was required to calculate the address and

another cycle to access the main memory, delayed loads were

implemented, so that execution of the following instruction could

continue if it did not reference the register into which the load

instruction was loading the data. The CPU was "interlocked" - it

went into an "idle" state if the register for the new data was

referenced before the data was available. The high level language

compilers were usually able to re-sequence instructions so that this

idle state was rarely used, maintaining the primary goal of one

instruction per cycle.

vi) Branch instructions to enhance the instruction pipeline's efficiency.

Delayed branch instructions were implemented to maximise the

pipeline efficiency and ordinary (two cycle) branch instructions were

implemented to avoid lengthening programs by placing NOP

instructions in the branch delay slot.

vii) Powerful compilers to utilise the hardware.

The compiler had to be able to make efficient use of the CPU

registers, re-order instruction sequences to find instructions to put

after the instructions with delayed actions (load and branch) and

-34-

provide powerful code optimisation. The PL.8 and Pascal compiler

produced for the 801 project pioneered many of the optimising

compiler techniques still used today [Ausl82].

The resulting computer was extremely fast, approximately five times

faster than machines using comparable hardware technology. Although

the 801 CPU was spread across multiple chips, it pioneered the technology

for all future single chip RISC designs. It established the principle that

the architecture be designed to support the compiler, not trying to second

guess the programmer by providing a static set of high level functions in

microcode, but provide the low level tools to let the compiler produce

simple and efficient code, and utilise the cache to provide a dynamic set of

frequently used code sequences.

Commercial RISC Designs

Sun Scalable Processor Architecture (SP ARC)™

The RISC acronym was actually coined by a research team at Berkeley

University in 1980, led by Dr Dave Paterson. The object of the research was

to show that Very Large Scale Integration (VLSI) could be exploited to

build a small, very fast 32 bit microprocessor on a single chip, eventually

named RISC 2 (RISC 1 was an earlier design) [Patt80, Patt81,Patt82,

Patt85]. Sun Microsystems Scalable Processor Architecture (SPARC) is an

extended version of RISC 2 (an FPU and a different register layout are the

major differences).

The constructs used in a wide range of high level language programs

were studied to arrive at a suitable set of instructions and addressing

-35-

modes, as summarized in Table 3. The number of instructions for each

high level language construct was based on code produced by compilers

for the DEC VAX, DEC PDP 11 and Motorola 68000 architectures.

Measure Occurrence Weighted by Weighted by

instructions # memory refs

Language Pascal c Pascal c Pascal c
Call/Return 12 12 30 33 43 45

Loops 4 3 40 32 32 26

Assignments 36 38 12 13 14 15

IF 24 43 11 21 7 13

BEGIN 2D 5 2

WITH 4 1 1

CASE 1 1 1 1 1 1

GOTO 3 0 0

Table 3: Relative Frequency of High Level Language Statements.

Because memory bandwidth is a performance bottle-neck for a

microcomputer CPU, it was desirable to reduce the number of memory

references as much as possible. The procedure call and return sequences

were particularly memory intensive, because parameters and return

values reside on the call stack, which is held in memory. In these designs

a very large number of registers (138 on RISC 2, 120 on the first SPARC

implementation) are provided on the chip, to make the load/store

architecture as efficient as possible by keeping as much of the stack data

as possible in registers. All the registers cannot be addressed at once,

-36-

because of the large number of bits required to encode a register number,

so just thirty two are "visible" at any one time, divided into four groups -

i) Global registers

Eight registers (0 to 7) are always "visible" and are used to hold global

data. Register 0 always contains zero, and cannot be altered, it is

mainly used to simulate a move instruction with an add instruction

(one operand is Register 0), or to simulate a compare instruction with

a subtract instruction (the destination register is Register 0).

ii) "IN" registers.

The next eight registers (8 to 15) are used by a procedure to access its

parameters. This is done automatically by the call instruction, see

(iv) below.

iii) Local registers

These eight registers (16-23) are automatically made unique to each

procedure by the call and return instructions. They are used by a

procedure to store its local variables.

iv) "OUT" registers

The last eight registers (24-31) are used to store the arguments for a

procedure call. The "out" registers of the calling procedure are

automatically mapped onto the "in" registers of the called procedure

when a call instruction is executed, so that parameters that fit in a

CPU register do not need to be placed on to the call stack before the

call, do not have to be accessed on the stack by the called procedure,

and do not have to be removed from the stack after the call. The called

procedure may pass data back to the calling procedure (as required

-37-

by Pascal's "var" parameters) by putting it in the "in" registers and

executing a "return" instruction- the "in" registers will be mapped

as the previous procedure's "out" registers ..

The registers are arranged in a circular queue, and overlap as shown in

Figure 3. A procedure call allocates a new register window, partially

overlapping the previous window. The return instruction shifts the

window back to reveal the previous procedure's registers. A SP ARC

implementation may have any number of windows, seven or eight is a

typical hardware size/speed tradeoff [Tami83,Wall88]. When the bank is

full (the window cannot be advanced any further without overwriting a

previous procedure's registers) a trap occurs in the processor and the

Operating System must copy the register window to memory. A similar

trap occurs if the window is retarded back to the point where register

values must be copied back from memory. Programs tend not to have

procedure calls more than seven or eight levels deep, so these CPU traps

do not occur very often, making the register windows very efficient .

• • •

increasing
stack depth

• • •
Figure 3: SP ARC Register Window Layout

-38-

Overall, register windows reduce memory traffic about ten percent, and a

program with many procedure calls can have up to a fifty percent memory

traffic reduction [Morr88]. Unfortunately, the large number of registers

incur two penalties -

i) The transistors used in the register file must be small to physically fit

on the CPU chip. These small transistors cannot drive the ALU bus

by themselves (as can the large transistors in a small register file), so

must be pre-charged before read operation to overcome the

capacitance of the bus. This lengthens the critical CPU data path,

thus affecting performance by lengthening the cycle time.

ii) A considerable proportion of the total chip area is used for registers,

this could be used for optimisation of other CPU operations (such as

fast multiply and divide hardware, memory management, or a small

cache) if another method for optimising register usage could be

found.

These penalties indicate register windows are not the best way to lower the

memory traffic around procedure calls, good register allocation does

nearly as well, and avoids both disadvantages. [Wall88]

SPARC has been used as the CPU and FPU architecture for many SUN

high performance microcomputers (workstations) such as the SUN 4/110,

SUN 4/260, SPARCstations (currently 3 models), and SPARCservers (at

least 6 models) offering performance from six to eighteen VAX Units of

Performance (VUPs) [SPEC90]. A DEC VAX 11/780 Minicomputer has one

VUP by definition. The high performance of the SUN implementations

has been achieved without the help of the best optimising compilers.

-39-

Microprocessor without Interlocked Pipeline Stages (MJPSTM)

This project started in 1981 at Stanford University, using a large research

team consisting of both hardware and software (mainly compiler) experts,

led by Dr John Hennessey [Henn82, Henn84]. Several architectures were

designed and implemented to offer the maximum performance by shifting

functionality from the hardware into the compiler, where performance

penalties are only incurred at compile time, rather than every time the

program is executed. MIPS Computer Systems was formed in 1984 to

build a commercial product based on an extended version of the latest

Stanford Architecture. Optimising compilers were designed to exploit the

architecture, especially the usage of the thirty-two integer and sixteen

floating point registers. The optimisations performed by the compiler

produced code so superior to the Sun compilers that any performance gain

provided by register windows was overshadowed by the speed of the entire

MIPS architecture [Morr88]. A five stage instruction pipeline is used to

split the execution of each instruction into sections executable in a single

cycle. [Kane88]. The MIPS architecture has a number of interesting

features-

i) No pipeline interlocks.

The architecture has delayed loads and branches, but the pipeline is

not interlocked, so instructions placed in the load delay slot will not

be able to access the loaded data. The onus is on the compiler to

schedule instructions so that pipeline interlocking to support data

dependencies (and hence the associated hardware in the processor

data path) is unnecessary. This may require the insertion of "nops"

into the load delay slots.

-40-

ii) No processor flags.

The architecture does not use the usual method of a single set of

processor flags (zero, negative etc) to store the result of compare

instructions. Instead the compare instructions (actually labelled SET)

store their result in one of the integer registers, and the branch

instructions compare the contents of the register to zero (Branch

Equal and Branch Not Equal). The condition codes in a normal

architecture make some code rErorderings impossible, because any

instruction may alter the flags. The MIPS approach allows the result

of a comparison to be left in a register so that the compiler may insert

any instruction between the compare and branch instructions.

Furthermore, the very common Branch and Branch Not Equal

operations can test a value in any register, so do not require any

explicit comparison instruction.

iii) Unaligned word access.

Special instructions in the AL U (Load Word Left and Right) allow

data words that are not aligned on a word boundary to be loaded in

two instructions (rather than the usual three (two to load the data

and one to combine the two parts) plus a load delay slot). These

unusual RISC features were deemed important enough by the MIPS

designers to justify their inclusion.

iv) Integer multiply and divide instructions.

The CPU has multi cycle instructions which perform signed and

unsigned 32 bit multiplication yielding a 64 bit result, and a 32 bit

division instruction yielding a 32 bit quotient and a 32 bit remainder.

These instructions are hardware interlocked, as their execution

times are likely to change between implementations, and the same

-41-

code has to be supported by all the different implementations.

Considerable amounts of CPU chip space were required by these

instructions, but again their relative usefulness was enough to

justify their inclusion.

v) Simplified Floating Point Unit.

The MIPS FPU (housed on a separate chip) also has a reduced

instruction set. Add, Subtract, Multiply, Divide, Absolute Value,

Move, Negate and Convert to and from integer are the only

instructions supported. CISC FPU's usually have Sine, Cosine, Arc

Tangent, Polar functions,Exponent and Root functions, which must

be implemented in software on a MIPS, extending the RISC

philosophy. Communication between the CPU and FPU is via "co­

processor" instructions in the CPU instruction set. The FPU was

optimised by hand, a feat no CISC design team could hope to

perform, due to the size of a CISC FPU [Rowe88].

vi) On chip memory management.

The CPU chip also contains hardware to manage large off-chip

caches, and a 64 entry Translation Lookaside Buffer (TLB) of recent

virtual to physical address translations. The provision of these

functions on the CPU chip makes communication with them very

fast, resulting in fast, flexible memory systems.

The MIPS architecture has the best performance of any VLSI

architectures{SPEC90]. The removal of considerable amounts of hardware

from the critical data path (condition code setting, data dependency

interlocks) allows very fast clock rates to be implemented. Optimising

compilers exploit the architecture to produce thirty percent more efficient

-42-

code (less instructions) than compilers for other RISC architectures

[Morr88]. The processor does require a high performance (expensive)

memory system, but this will be required by any system of such high

performance. The Harvard architecture utilising two caches (one for

instructions, the other for data) connected to a common memory allows

some control of the price/performance ratio of the architecture by varying

the cache size. The R2000 and R3000 are implementations of the MIPS

architecture, used in MIPS products with performance from twelve to

twenty VUPs, Digital Equipment also use MIPS processors in their

DECStation range. The MIPS architecture has been extended to a multiple

chip implementation for use in a mini-computer (using a different family

of transistor logic) called the R6000, used to produce a 66.7 MegaHertz, 55

VUP machine called the RC6280. This machine has a twin level cache

system: the primary level has two virtually addressed, direct mapped,

write through caches, 64 Kilobyte for instructions and 16 Kilobyte for data;

the secondary cache is physically mapped, two way set associative with

write back, and is shared by both instructions and data. It has 512

Kilobytes, and requires an extra cycle to be accessed. This cache system

has a 99.5 percent hit rate.

Other Commercial RISC Architectures

Several other RISC architectures are currently being used as the CPU for

high performance microcomputer systems. Data General Corporation use

the Motorola 88000 series chips in their Aviion™ workstation. The 88000

architectures consists of a 88100 CPU and two 88200 Cache and Memory

Management Units (CMMUs), one CMMU for instructions, the other for

data [Dobb88, Jone88, Jone89, Mele89]. The 88100 architecture has some

-43-

instructions to support the emulation of the 680x0 architecture (single

cycle bit field manipulation instructions provide the most support).

IBM have developed the Performance Optimisation With Enhanced RISC

(POWER) architecture, and this is used in the RISC System/6000 series of

workstations. The integer performance of this architecture is similar to

other RISC processors, but the floating point performance is very good,

approximately twice the performance of competitors' Floating Point Units

[IBM90]. The architecture has a separate processor to predict branch

destination addresses and to execute branch instructions, to keep the

integer and floating point instruction pipelines full.

The AMD29000 architecture is targeted for embedded applications

[AMD87, Lehr89]. It has been used as a graphics accelerator in the Apple

Macintosh Ilfx™ personal workstation [Heid90].

The Systems Performance Evaluation Cooperative (SPEC) have developed

a suite of "benchmark, programs, representative of real world computer

applications, which can be used to compare the performance of different

·architectures [SPEC90]. These "SPECmarks, provide useful comparisons

between the performance of different architectures, and indicates the

MIPS architecture to have the highest performance at a given clock speed.

Other RISC architectures have similar performance, while the CISC

architectures (of the same generation) achieve around one quarter of the

RISC performance.

-44-

ChapterS
The Acorn RISC Machine

The Acorn RISC Machine (ARM) is a processor that achieves an excellent

price/performance ratio, for different reasons to other RISC processors

and implementations, as it offers reasonable performance at a low cost,

rather than maximum performance at any cost. [Furb89, VTI89]. The 32

bit architecture is tailored towards low cost applications: inexpensive

micro-computers, embedded controllers for laser-printers, graphics

accelerators and network adaptors [Cate88, Wils89a]. The architecture

has three implementations -

i) ARMl (now obsolete, used only in development machines) mentioned

only for completeness.

ii) ARM2, a faster implementation of ARMl (with added multiply and

co-processor instructions).

iii) ARM3, essentially an ARM2 combined with a cache on a single chip

(and an added semaphore instruction) [Wils89b].

The ARM instruction set is shown in Table 4, the instruction format is

· shown in Appendix A. The architecture has been designed to be coupled

with a relatively slow DRAM memory, to avoid a fast (expensive) memory

system which would significantly increase the price for the low cost

applications ARM was targeted for. Because one new instruction was

required from the memory in every clock cycle, the clock cycle time is

limited by the instruction transfer time of the memory. The 26 bit address

bus (and Program Counter) allow 64 MegaBytes of memory to be directly

addressed.

-45-

Function Mnemonic Operation Cycles

Data Processing

Add ADD Rd :=Rn + Shift(Rm) 1S

Add with carry ADC Rd :=Rn + Shift(Rm) + C 1S

Subtract SUB Rd :=Rn - Shift(Rm) 1S

Subtract with Carry SBC Rd :=Rn - Shift(Rm) -1 + C 1S

Reverse Subtract RSB Rd :=Shift(Rm) - Rn 1S

Reverse Subtract with Carry RSC Rd :=Shift(Rm)- Rn- 1+ C 1S

And AND Rd :=Rn AND Shift(Rm) 1S

Inclusive OR ORR Rd :=Rn OR Shift(Rm) 1S

Exclusive OR EOR Rd :=Rn XOR Shift(Rm) 1S

Bit Clear BIC Rd :=Rn AND NOT Shift(Rm) 1S

Move MOV Rd :=Shift(Rm) 1S

Move Negative MVN Rd :=NOT Shift(Rm) 1S

Compare CMP Rn - Shift(Rm) 1S

Compare Negative CMN Shift(Rm) + Rn 1S

Test for Equality TEQ Rn XOR Shift(Rm) 1S

Test Masked TST Rn AND Shift(Rm) 1S

Multiply MUL Rd :=Rm x Rs 1S +16Imax

Multiply with Accumulate MLA Rd :=Rm x Rs + Rn 1S +16Imax

Data Transfer

. Load Register (& Byte) LDR Rd :=Address contents 1S+1N+ll

Store Register. (& Byte) STR Address contents := Rd 2N

Swap Memory & Register (ARM3) SWAP Rd :=: Address contents 2S+1N+ll

Multiple Data Transfer

Load Multiple

Store Multiple

LDM Rlist :=Address contents (n-1)S+1N+ll

STM Address contents := Rlist (n-1)S+2N

Table 4: ARM Instruction Set

-46-

Function
Flow Control

Branch

Branch with link

Software Interrupt

Co-Processor

Mnemonic Operation

B

BL

SWI

CDP

MRC

PC := PC + Offset

R14 := PC, PC := PC + Offset

R14 :=PC, PC:= Vector#

CP dependent

Rdc := Rm

Cycles

28+1N

28+1N

28+1N

lS+bi

lS+bi+lC

CP data processing

Move ARM reg to CP reg

Move CP reg to ARM reg

Load CP register

MCR Rmc := Rd lS+(b+l)I+lC

LDC Rdc := Address contents (N-l)S+bi+lC

Store CP register STC Address contents := Rdc (N-l)S+bi+lC

Execution Conditions

Always (AL), Never(NV) : Equal (EQ), Not Equal(NE)

Overflow Set (VS), Overflow Clear (VC) : Carry Set (CS), Carry Clear (CC)

Minus (MI), Plus (PL) : Higher (HI):Lower or Same(LS)

Greater than (GT), Less than or Equal (LE) :Greater than or Equal (GE), Less than (LT)

Shift Operations

Logical Shift Left, Logical Shift Right, Arithmetic Shift Right

. Rotate Right, Rotate Right with Extend by one bit

Key to Cycle Length

S cycle time is determined by the sequential access speed of the memory

N cycle time is determined by the random access speed of the memory

I cycle time is the processor internal clock speed (usually the same asS)

C cycle time is the co-processor clock speed

n is the number of registers to be saved

b is the number of cycles the processor must wait for the co-processor to be ready

Table 4 (continued): ARM Instruction Set.

-47-

Architecture Characteristics

The type of applications for which the ARM was targeted at resulted in a

number of interesting features -

i) DRAM menwry support.

The ARM CPU provides the memory controller with a signal,

indicating sequential memory addresses, to utilise fast DRAM access

modes. Continuous instruction sequences (i.e. not containing any

taken branch instructions) use this signal to achieve over fifty

percent more memory bandwidth when coupled to DRAM memory.

The cycle times for instructions reflects this, a normal instruction

takes one S (sequential) cycle, a branch instruction has one N (non­

sequential) cycle to load the first instruction from the branch

destination, and two S cycles to load the next two instructions to refill

the instruction pipeline. Acorn have designed a memory

management chip for the ARM, which uses the sequential signal to

access the attached memory and to supply the clock signal to the

processor. The memory controller also contains a 128 entry content

addressable memory, which is used as a Translation Lookaside

Buffer (TLB) for virtual addresses.

ii) Atypical instruction complexity.

The ARM instruction set is more complex than the IBM 801, SPARC

and MIPS architectures, because the CPU was designed to be very

memory efficient, to maximize the available memory bandwidth for

loading instructions. Most RISC architectures suffer a performance

loss due to the low information density of their simple instructions

(as shown in Table 3) because more instructions are loaded and

-48-

executed in comparison to a CISC architecture. This performance

loss is usually outweighed by the performance gain that the fast

instruction decode facilitates. The ARM architecture has ten

different instruction "families", in comparison to the three or four

which is more typical of other RISC architectures.

The elementary instruction pipeline has three stages: fetch, decode

and execute. The complexity of the instructions means that each

instruction must be substantially decoded before the operand values

are known and execution may begin. Reading the operand registers

is performed at the start of the execution stage, rather than at the end

of the decode stage (which is typical). This lengthens the execution

stage, but because the CPU cycle time is limited by the memory speed

no performance penalty results.

iii) Conditional instructions

All instructions in the ARM architecture contain a condition field,

which determines, depending on the values in the processor's

condition flags, if the instruction will execute, similar to the way

most architectures conditionally execute branch instructions. The

sixteen possible conditions are shown in Table 4. Having conditions

on all instructions results in better utilisation of the condition code

evaluation hardware normally used exclusively for branch

instructions, but does require a four bit field in each instruction.

Branch instructions are often used to conditionally execute just one

or two normal instructions: in ARM code these few instructions can

be conditionally executed and the branch instruction (which may

stall the CPU to refill the pipeline) can be removed. The setting of the

condition codes by arithmetic operations is also optional, making it

-49-

possible to preserve the condition codes throughout a sequence of

such instructions. Consider the code for a Greatest Common Divisor

algorithm, the C code is to find the GCD of a and b (leaving the result

in both a and b)

while (a != b)
if (a >

a
else

b

b)
-=

-=

b

a

I* reached the end yet ? *I
I* if a is greater than b *I
I* subtract b from a *I

I* subtract a from b *I

The assembly code for a "normal" architecture would be

gcd cmp
beq
blt
sub
bal

bgtra sub
bal

end

rl,r2
end
bgtra
rl,rl,r2
gcd
r2,r2,rl
gcd

I* reached the end yet ? *I

I* if a is greater than b *I
I* subtract b from a *I

I* subtract a from b *I

But the assembly for ARM is

gcd cmp
subgt
sublt
bne

rl,r2
rl,rl,r2
r2,r2,rl
gcd

I* if a is greater than b *I
I* subtract b from a *I
I* subtract a from b *I
I* reached the end yet ? *I

These instructions are particularly useful for range checking - the

code for absolute value (of register 1) is

abs cmp rl,O
rsbmi rl,rl,O

I* test sign *I
I* a:=O-a (two's complement) *I

The code to replace ASCII control code in register 1 with a "?" is

repl cmp r1,127
cmpne rl," "-1
movls rl, '?'

iv) No delayed branches.

I* is it a DEL *I
I* or less than space *I
I* then replace it *I

Branch instructions take three cycles to execute if they jump to a new

memory address (i.e. if they really do branch, but only take one cycle

if they do not branch). The first of the three cycles is used to execute

the branch instruction, the two remaining cycles are needed to reload

-50-

the instruction pipeline from the branch destination address. To

simplify the processor no instructions are executed while the pipeline

is reloaded (i.e. the instruction after the branch is not executed as a

branch delay instruction). A delayed branch architecture requires

two program counters because a trap can occur in the branch delay

slot as well as in the branch destination; one PC contains the address

of the instruction in the branch delay slot, the other contains the

branch destination address. Of course both program counters must

be saved when a process switch occurs, which as shown later, would

complicate ARM too much to justify the performance gain of delayed

branches, so they are not used. Because ARM has a 26 bit address

bus a condition code, instruction identifier and a complete memory

address can be encoded in a single instruction.

v) Uniform register file.

ARM has twenty-seven general purpose registers, but only sixteen

are visible at once. The remaining registers are mapped across the

processor's four modes of operation: User, Interrupt, Fast Interrupt

and Supervisor, as shown in Figure 4.

-Register 15 contains the program counter, condition code flags and

some processor status bits (Interrupt enable and processor mode).

-Registers 14, called the Link register, is used to store the return

address for subroutine calls.

- Register 13 has no dedicated purpose, but is normally used .as a

stack pointer.

Each processor mode has an individual stack pointer and link

register, and Fast Interrupt mode has five more private registers,

that do not have to be saved between interrupts, which is the main

-51-

reason for this mode's name. Using a general purpose register for

the program counter and status flags has many advantages -

a) the contents may be altered, loaded and saved with existing

instructions and CPU hardware.

b) the condition code settings may be tested with existing

instructions.

c) PC relative addressing modes are easily achieved by using the PC

as the base address register.

d) the entire CPU state is held in general purpose registers, so it can

be saved and restored with ordinary instructions.

User Mode

))I
NZCVIF

Condition Codes &
Interrupt Status

Program Counter

Interrupt
Mode

Fast Supervisor
Interrupt Mode

Mode

Figure 4: ARM Register Layout

-52-

Ill

' Processor
Mode

vi) Parallel shift operations.

The ARM has a three operand, register to register, architecture: the

result (destination) register of a data processing instruction is

specified independently of the two operands (sources). The first

operand must be a register; the second may be a register or an

immediate value. If the second operand is a register its value can be

shifted or rotated in a number of ways before it is passed to the ALU,

making it possible to remove many explicit shift instructions from

the code by combining them with a data processing instruction to

form a single instruction. The magnitude of the shift (or rotate) can

be expressed as either a constant (called an "immediate") or as the

contents of any register. A general purpose "barrel" shifter (named

due to its architectural layout) is used to perform all these operations.

There are five different types of shift, illustrated in Figure 5-

Logkal
Shift Left

Logkal
Shift Right

Arithmetic
Shift Right

Rotate
Right

Rotate Right
with Extend

Carry 31 2A 23 16 15 8 7 0
Q41111111111111111111111111111111 j-.-o

31 2A 23 16 15 8 7 0 Carry

0
------11 111 11 111 111 11 111 111 111 11 111 111 H

Sign 31 2A 23 16 15 8 7 0 Carry
Ext01111111 11111111 11111111 11111111 H

31 2A 23 16 15 8 7 0 Carry
dlllllll!l 1111111111111111111111 'rD

31 2A 23 16 15 8 7 0 Carry
dlllllllllllllllllllllllllllllll~

Figure 5: ARM Shift Operations

-53-

a) Logical Shift Left (LSL).

The bits of the operand are shifted left by the specified number of

bits. Zeros are inserted into the right most end of the word, and

the last bit removed from the left most end is placed in the carry

flag. A Logical Shift Left with a magnitude of zero (LSL 0) does

nothing and is the default shift if none is specified.

b) Logical Shift Right (LSR).

The bits of the operand are shifted right by the specified number of

bits. Zeros are inserted into the left most end of the word, and the

last bit removed from the right most end is placed in the carry

flag. An LSR 0 is translated into an LSR 32, to put bit 31 of the

word into the carry flag.

c) Arithmetic Shift Right (ASR).

The bits of the operand are shifted right by the specified number of

bits. The left most bit (the sign bit) is repeatedly inserted into the

left most end of the word, and the last bit removed from the right

most end is placed in the carry flag. An ASR 0 is translated into

an ASR 32, to propagate bit 31 of the word into every bit in the

word as well as the carry flag.

d) Rotate Right (ROR).

The bits of the operand are rotated right by the specified number

of bits. The bit removed from the right most end is inserted into

the left most end of the word, and the last bit removed from the

right most end is placed in the carry flag. A ROR 0 is translated

into a Rotate Right with eXtend (RRX), the carry flag is used as a

33rd bit for the rotate, that is, the right most bit is placed into the

-54-

carry flag and the old value of the carry flag is inserted into the

left-most end of the word. Notice that RRX only rotates by one bit

at a time.

ARM has two extra instructions to fully utilise the "barrel" shifter,

Reverse Subtract (RSB) and Reverse Subtract with Carry (RSC).

These instructions use their operands in the opposite order to the

normal subtraction instructions (SUB and SBC) so that both the first

and the second operand may be shifted or rotated (SUB and SBC

subtract the shifted operand from the unshifted operand, RSB and

RSC subtract the unshifted operand from the shifted operand).

Consider the following ARM code to change the byte order of a 32 bit

word (the word is in rO, rl is used as a scratch register)-

eor rl,rO,rO ror 16
bic rl,rl,OxffOOOO
mov rO,rO,ror 8
eor rO,rO,rl lsr 8

The code for a "normal" architecture require 3 more instructions,

and an extra register. The code for constant multiplications is also

very efficient, using only half the number of instructions of a normal

architecture because pairs of shift instructions and add or subtract

instructions can be combined in single instructions.

vii) Rotated Immediate Operands.

The second operand of a data processing instruction may be a

constant (called an "immediate" operand). There are twelve bits

reserved in the instruction for this value, but these bits are split into

two fields: an eight bit quantity and a four bit rotate magnitude. The

eight bit quantity is rotated right by twice the rotate magnitude, using

-55-

the same "barrel" shifter used for shifted register operands. This

allows a more useful range of immediate operand values than a

twelve bit constant, and can be combined with a single instruction as

a bit mask to access all the process status flags in register 15. The

above example used this feature to load a 24 bit constant (OxflOOOO) in

one instruction.

viii) Atypical Addressing Mode Complexity.

The ARM is a von Neumann, load/store (register to register)

architecture. Because the single memory bus is almost fully utilised

loading instructions, the load and store instructions must take more

than one cycle (one to load a new instruction and another to access

memory for the load and store). Because the cycle time of ARM is

limited by the access speed of memory, loading data will take a full

cycle, and a third cycle will be required for load operations to transfer

the loaded data from the data bus to the destination register. However

this third cycle is usually overlapped with the next instruction, so

can usually be ignored. Because of the free processor cycle that

occurs before memory can be accessed by a load or store (because an

instruction is being fetched), a rich set of memory addressing modes

have been implemented-

a) Base Register plus Offset.

The value of a base register and an immediate value or the value

in an offset register are combined to form the memory address.

The immediate is a twelve bit unsigned integer which may be

added or subtracted from the base register (effectively yielding a

thirteen bit signed immediate offset). The value of the offset

register may be shifted in a similar manner to the second

-56-

operand of a data processing instruction, (although only by an

immediate amount).

b) Base Register Plus Offset with Pre Increment (or Decrement).

These modes are similar to Base Register plus Offset, but the

result of the base register and offset addition (or subtraction) is

written back to the base register. This mode is useful for

accessing arrays of data. The shift applied to a register offset can

be used to directly scale the array index.

c) Base Register Plus Offset with Post Increment (or Decrement).

These modes are similar to the above except the Base plus offset

calculation is not performed or written back to, until after the

memory access has been made. These modes are also useful for

(scaled) array operations.

It should be noted that these addressing mode calculations only use

existing hardware used for normal addition and subtraction data

processing instructions, so they only add decoding hardware to an

implementation. A flag in the instruction word indicates that a

single byte should be loaded from memory rather than a full word;

there is no single instruction to load a 16 bit quantity or to load and

sign extend a byte.

ix) Multiple register operations.

Two instructions are provided to load and store multiple registers to

and from memory. Any or all of the sixteen registers visible in the

current processor mode can be loaded or stored with one (multi­

cycle) instruction. Similar addressing modes to the single register

-57-

loads and stores can be used for these multiple register operations,

providing very efficient stack and queue operations. These

instructions also inform the memory system that data will be loaded

sequentially, so the fast DRAM page mode memory accesses can be

used. This makes these instructions nearly four times more efficient

than separate load/store instructions, because the latter must load as

many instructions as data objects (which will take twice as long) and

cannot utilise the page mode DRAM accesses because instructions

and data are accessed alternately (and page mode cycles are twice as

fast as normal cycles).

Because the entire CPU context for each processor mode is held in

the sixteen visible registers, procedure calls and context switches are

very efficient. For example, the entry sequence to a procedure might

save all the registers on the stack (pointed to by r13) with

stmfd r13!,r0-r14

and the exit sequence might return with

ldmfd r13!,r0-r13,r15

The f and d indicate the type of stack: "f' for full - the stack pointer

points to the next value to be popped from the stack ("e" for empty

would mean the stack pointer points to the location where the next

push will put its data) ; "d" (descending) indicates the direction of

stack growth, its opposite is "a" (ascending). The "!" indicates the

stack pointer (in this case r13) should be updated with the new top of

stack value. Notice these two instructions also generate the

procedure return by saving the value in the link register and loading

it back as the program counter.

-58-

x) Software Interrupt.

This instruction causes the processor to switch to supervisor mode

and jump to a fixed address, to provide an entry point into the

operating system from a program. A 24 bit field in the instruction is

used to specify the Operating System function that is required.

xi) Coprocessor interface.

The ARM instruction set includes three instruction families to

manage an efficient interface for hardware co-processors, which

add hardware support to the ARM architecture. Up to sixteen co­

processors can be connected to the interface at once, for example a

Floating Point Unit, graphics accelerator or digital sound processor.

The three instruction families are-

a) Co-processor data processing.

This class of instructions is used to inform a co-processor that it

should perform some internal operation, such as a "floating point

addition" in the case of an FPU. The instruction specifies two

source registers and a destination register for the operation, and

may specify up to 128 different operations.

b) Co-processor register transfer.

These instructions are similar to the above class, except that they

specify a single ARM register. This is useful for operations like

"convert integer to floating point", the integer is held in an ARM

register, and the result of the conversion is placed in an FPU

register.

-59-

c) Co-processor load/ store data.

These two instructions are used to load data from memory into a

co-processor register. The ARM CPU handles all the address

calculations and has the same addressing modes as the normal

load and store instructions, except the immediate offset can only

occupy eight bits instead of the normal twelve (the other four are

used to specify the co-processor number).

xii) ARM 3 Cache.

The ARM3 implementation has a small cache memory on the same

chip as the CPU (it also has a semaphore instruction to aid systems

with multiple CPUs). The cache holds four kilobytes of instructions

and data, is 64 way set associative, with a sixteen byte line size and a

write through random replacement algorithm. It uses virtual

addresses because the address translation hardware is not included

on the CPU chip. The cache controller is configured as a co­

processor for simple programming. The cache does not have a write

buffer: when a store instruction is executed the CPU clock is

synchronized with the main memory clock, and the instructions

proceed at the main memory speed. Adding a write buffer to the

cache would alter the exception handling mechanism, making

ARM3 incompatible with ARM2.

The hnpact on Performance

An approximation of the effect that these architectural features have on

the overall performance of ARM can be quantified using known statistics

for the relative frequencies machine code instructions [Gros88] [Tane78].

-60-

If ARM had delayed branches to optimise "taken" branch performance,

two delay slots would be required. Compilers for architectures with two

delay slots can fill around sixty percent of the delay slots with a useful

instruction, and taken branch instructions for these architectures are

responsible for about twelve percent of all instructions, so ARM loses

12% of instructions x 2 delay slots x 60% filled slots

or about fifteen percent of its performance because of the lack of delayed

branches. About fifty percent of branch instructions branch around just

one instruction, a further twenty percent branch around just two: these

branches can be replaced by ARM's conditional instructions. The time

taken (number of cycles) for an ordinary branch around one or two

instructions in ARM is approximately

50% x 3 cycles for a taken branch+ 50% x (1 cycle untaken branch+

70% x 1 instruction + 30% x 2 instructions)

or about 2.6 cycles on average. Using conditional instructions the number

of cycles drops to

70% x 1 instruction + 30% x 2 instructions

or just 1.3 cycles, resulting in a 65 percent increase in the efficiency of

branch instructions, or an overall loss over delayed branches of twelve

·percent.

Shift operations account for approximately five percent of all instructions.

Many of these can be performed in parallel with data processing

instructions, say eighty percent, a net saving of about four percent of all

instructions. The barrel shifter lengthens the critical CPU data path by

about fifteen percent, but the access time of the main memory is still

longer than the time spent in the execution stage, so this fifteen percent

has no effect on the overall performance.

-61-

The single register transfer instructions have a useful set of addressing

modes not usually found on RISC machines, and these should yield an

eight percent performance gain. The multiple register transfer

instructions can be used for efficient procedure calls and data block move

operations and are used for about half of all memory accesses [Furb89]

(about twenty percent of all instructions), making them very worthwhile

as they make DRAM memory accesses nearly four times more efficient,

and would be expected to yield a twelve percent performance increase.

Because the program counter is a general purpose register, jump

destinations that are evaluated at run time (as in a CASE statement) can be

efficiently handled with general purpose instructions, but the frequency of

CASE statements is too low for this to add a significant performance

advantage.

Thus when ARM is connected to DRAM a twelve percent performance

increase would be expected over a simpler machine (say the MIPS

architecture). When connected to SRAM (or a cache) the fifteen percent

longer cycle time and the lessening in the usefulness of the multiple

register transfer instructions would make ARM roughly equivalent to a

·more simple architecture.

Thus the ARM architecture has efficient support for all the high level

language features listed in Chapter 2. A highly optimised text

decompression algorithm written using many of these features can

decompress data faster than traditional architectures (both CISC and

RISC) [Jagg89]. The above features can be fully exploited by a high level

language compiler resulting in a very desirable computer: one with a low

price/performance ratio.

-62-

Evaluating an architecture

Evaluating a new architecture is a task made up of several stages -

i) Programs must be chosen as performance benchmarks, to evaluate

the architecture. The emphasis here has been on utility programs

from the UNIX Operating System, written in the C programming

language.

ii) A compiler, its associated optimisers, an assembler and a linker

must be built to transform the high level code of the benchmark

programs into efficient executable machine code. The ability of the

compiler to produce good code is relied upon by RISC architectures to

gain good performance, as detailed in Chapters 4 and 5.

iii) A performance monitor must be constructed, firstly to evaluate the

quality of the code produced by the compiler, and secondly to evaluate

the ability of the architecture to support the high level language

features, as detailed in Chapter 6.

All these tasks have been successfully completed for the evaluation of the

ARM architecture. An optimising compiler has been constructed to

·exploit the ARM architecture to produce efficient code, rather than being

"user friendly" enough to release as a commercial product. A software

performance monitor has been built to record accurate information on any

architectural feature, whilst still providing good performance so that it

could be used to evaluate the execution large programs. The benchmark

programs chosen were designed to give a reliable estimate of performance

for the type of code that the ARM architecture could execute, as described

in Chapter 7.

-63-

Chapter4
Computer Software

The Operating System, compilers and application programs that use the

computer hardware are responsible for delivering the performance to the

user. Inefficient algorithms can neutralise the performance of the fastest

CPU, and inefficient data structures can devour precious memory.

The Operating System

The Operating System (OS) of a computer is a unique program used to

allocate the computer's resources, such as the CPU, memory and disk

drives. Designing an OS from scratch is a very long and expensive

undertaking. UNIX™ is becoming a standard Operating System for high

performance microcomputers (workstations), due to its portability

between different types of hardware. The main reason for this portability

is because UNIX is almost entirely written inC, a high level language. A

small machine code kernel of low level operations, and a C compiler is the

only software that is required for UNIX to be ported to a new machine (a

· crude method of loading the initial kernel and compiler into the machine

(called a "bootstrap") will also be required). Clearly the machine code

kernel must make efficient use of the low level resources it allocates,

because the rest of the OS relies on this code. Even more importantly, the

C compiler must produce very efficient code to fully utilise the computer

hardware, as most of the Operating System is compiled C code.

-64-

Compilers

High level languages are used to construct Operating Systems and

application programs. For a compiler to be effective, it must produce

machine code of comparable quality to machine code that is hand written

by a programmer. Constructing complete compilers for a range of

programming languages for a new machine is an extremely labour

intensive operation, so compilers are usually split into two parts, called

the front-end and the back-end. A different front-end is constructed for

each high level language, to transform the high level language code into

an "intermediate" code, which has a semantic level somewhere between

high level languages and a computer's machine code. One back-end is

made for every different architecture, it takes the intermediate code

produced by a front-end and transforms it into machine code. Careful

selection of the statements or instructions in the intermediate code allows

it to be used for a number of similar language front ends (C and Pascal for

example), and be translated by a number of back-ends into the machine

code of different architectures. Intermediate languages tend to be simple,

and general purpose, in fact very similar to RISC code, for two reasons-

a) The intermediate code does not need to have an efficient bit level

encoding (like assembly code), so, for instance, the size and number

of intermediate instruction operands are not limited by the size of a

certain instruction format.

b) It is much easier to construct a compiler for a simple instruction set

than for a complex one, which is one reason for the development of

RISC machines. Sequences of simple instructions offer more

opportunities for optimisation than compound complex instructions.

-65-

The back-end for a CISC architecture is much more complex than a

RISC back-end, because its main task is to replace a sequence of simple

intermediate code instructions with a complex one. The RISC back-end

has a more simple task: the job of producing RISC assembly from

intermediate code can be reduced to little more than a translation if the

intermediate code is properly selected. This allows more time for

optimisation of the intermediate code, generating a direct code

improvement to the final assembly code.

So to produce a new compiler for a different high level language only

requires the construction of the front-end, and the language becomes

available on all machines with a suitable back-end. To port existing

compilers to a different architecture only requires the construction of a

back-end, which is then combined with each front-end, to produce

compilers for a range of high level languages. This is far more efficient

than constructing complete compilers for every language on every

machine. The extra level of translation required by using an intermediate

language seems theoretically inefficient, but because the total workload

·has been roughly halved (to support a new language or new architecture),

more effort can be expended on the remaining work, culminating in an

superior compiler produced in the same time span [Aho86].

Figure 6 illustrates the translation path from high level language code to

intermediate code to machine code. Both the front-end and the back-end

are split into a number of separate sections -

-66-

Front End

Back End

Figure 6: Compiler Stages

i) Language Pre-processor.

The C programming language has a pre-processor to expand

macros (defined with #define), textually include files in a program

(#include), and conditionally compile high level code (#ifdef).

ii) Intermediate Code Generator.

The code generator in the front-end is responsible for translating

each high level language statement into one or more intermediate

language statements or instructions by parsing the high level

language symbol by symbol (a symbol is a syntactic atom) and

generating suitable intermediate code to carry out the action

required. For example an IF statement will be translated into code to

evaluate the Boolean expression controlling the IF, and the result of

the Boolean expression will be used as the condition on a branch

instruction to the end of the body of the IF statement. In fact the

evaluation of expressions is often the most complex part of the code

-67-

generator, due to operator precedence and context requirements. The

allocation of variables to CPU registers (register allocation) is

planned here, by inserting temporary information into the code about

variable usage frequencies. For a full description of code generation

see [Aho86].

iii) Intermediate Code Peephole Optimiser.

This section of the front-end scans the code produced by the code

generator looking for short sequences of instructions that can be

replaced by shorter or more efficient sequences. Such sequences are

often found on the boundaries between code produced by different

sections of the code generator: for example, the boolean expression

evaluator may finish by pushing its return value onto a stack, and

the code produced for an IF statement may begin by popping the value

of the stack, these push and the pop operations can be removed to

funnel the boolean value straight to the branch instruction produced

for the IF statement.

iv) Intermediate Code Global Optimiser.

This section of the front-end is responsible for manipulating entire

blocks of code, to make them more efficient. Many global

optimisations are possible, especially with a simple intermediate

code-

a) Common Sub-expression Elimination.

Multiple computations of the same expression are removed by

this phase. The result of the first computation is stored in a

temporary location and the second computation is replaced by a

reference to this location. Of course extreme care must be taken to

-68-

ensure the value return by two expression evaluations are indeed

the same (function calls complicate this due to global information

that may affect the result).

b) Strength Reduction.

The evaluation of expressions using loop variables is called

strength reduction. Expressions involving loop variables create

arithmetically progressive results that can be simplified, to

produce faster calculation methods.

c) In-line Substitution.

Procedures and functions that are called only once may be shifted

into the main stream code and the corresponding call and return

statements removed. The body of the procedure or function may

need to be modified to save the contents of registers used in the

procedure. This optimisation can be used on procedures that are

called more than once, but this will lower cache performance

because the multiple copies of a procedure body will be cached

separately.

d) Stack Pollution.

After a procedure call the arguments passed to the procedure

must be removed by the caller. When procedure calls happen

frequently, cleaning up the stack after each individual call may be

deferred, to allow several clean ups to be combined into one.

e) Copy Propagation.

Statements of the form A := B (in Pascal) can be removed, and all

-69-

subsequent references to A replaced by references to B, provided

that the values of A and B do not change.

f) Constant Propagation.

Statements of the form A := constant (in Pascal) can be removed,

and all subsequent references to A replaced by references to the

constant, provided the value of A does not change.

g) Cross Jumping or Tail Merging.

Two bodies of code that end by jumping to the same location, and

have the same statements before the jump may share one copy of

these statements by inserting a jump instruction before one

sequence to jump into the beginning of the other. Duplication of

statements often occurs in the code following an IF statement and

the code after the corresponding ELSE.

h) Loop Unrolling.

Unrolling loops involves joining several copies of the loop body

together to lower the number of jumps to the beginning of the

loop. This optimisation is only practicable for very short loop

bodies - it increases code size which reduces cache efficiency.

i) Code hoisting.

Calculations that are invariant in a loop may be shifted to before

the loop where they will not be repeatedly evaluated. The major

index calculation used in matrix operations is a classic target for

code hoisting.

-70-

j) Loop fusion and loop splitting.

Loops may be split into separate loops, to allow other

optimisations (such as code hoisting, unrolling and strength

reduction). Two loops may also be joined to remove repeated

looping constructs over the same range.

k) Dead code elimination.

Many of the previous optimisations can leave code that is never

executed (especially constant propagation, copy propagation and

cross jumping), which is removed by this phase. Calculations

yielding results that are never used are also removed by this

phase.

1) Register allocation.

Making efficient use of CPU registers to hold frequently used data

is probably the most important optimisation. The register

allocation phase in the front end provides broad hints to the back

end as to which variables are best placed in registers. Local

variables, procedure arguments, global variables and procedure

identifiers are common candidates for register allocation.

Pointers, record fields and individual array elements can be

stored in registers, but the algorithms required to do so are very

complex. The allocation of variables to registers can be considered

as a graph colouring problem (as it is a time-tabling application),

where each node of the graph represents a variable, and a path

between nodes indicates that those variables are in use ("alive") at

the same time. The colouring algorithm attempts to colour the

graph, the number of colours that can be used is dictated by the

number of available registers. When a graph cannot be coloured

- 71-

some nodes must be removed, this means saving register

contents to memory (register "spilling"), a set of heuristics are

used to decide the best register to spill. Although colouring

algorithms are NP complete, they may be supplemented with

heuristics to make their use practicable in a compiler

[Brig89,Chat81, Chat82, Chow84, Chow88].

The optimisation passes of the compiler are usually controlled by

options to activate them. During program development the extra time

required for code optimisation is wasted, and in the extreme the

subsequent reorganisation of code makes source level debugging very

difficult. The optimiser is usually only used late in the software

development cycle, hence the discretionary use by the programmer.

v) Machine Code Generator.

A second code generation stage in the back-end is used to transform

the intermediate code into machine code mnemonics - assembly

code. This code generator must make efficient use of the particular

machine architecture, by efficiently utilising its instructions and

addressing modes. The final stage of register allocation is done here

(the actual graph colouring algorithm using information passed

from the front end). It is this stage of the compiler that benefits the

most from a RISC architecture due to the reduction in the number of

possible code sequences that can be generated.

vi) Machine Code Peephole Optimiser.

Another peephole optimiser pass can be used in the back-end to

remove any inefficient machine instruction sequences produced by

the machine code generator. This may involve combining load and

-72-

add instructions into a load with auto increment instruction.

Compare instructions can often be removed if the processor flags can

be set automatically by a preceding calculation. If the intermediate

code is carefully chosen, very little optimisation should be required

here, as the code generator should not generate sub-optimal

sequences of assembly instructions for optimal sequences of

intermediate language instruction. Again a RISC architecture helps

here, as the choice of instructions to generate is very limited

(compared to a CISC), and it therefore benefits more from the front­

end optimisations, because optimisation are not un-done by

inefficient CISC instructions (with wasted side effects). Optimal

sequencing of instructions and data can be made here, to optimise

the effectiveness of cache algorithms.

vii) Assembler and Linker.

Although not really part of the compiler, the final stage of the back­

end (and the entire compilation process) transforms the mnemonic

assembly language into machine code. For every assembly language

instruction there is exactly one machine code instruction, so no

further optimisation will be required to select the most efficient code

sequences. The linker combines multiple files together to produce an

executable image, by resolving references between different parts of a

program compiled at different times, and references to any language

library functions.

An intermediate language allows a common back-end to be used for

similar languages (for example Pascal, Modula 2, C and Algol), the

emphasis for better optimisation can be focused on a common optimiser

for the intermediate language to be used with all front-ends, and

-73-

optimiser for a particular architecture (or even individual

implementations).

Application Programs

The algorithms used by application programmers have a far greater effect

on the performance delivered to the computer user than compiler

optimisation. It is common practice for programmers to optimise their

high level code for a particular architecture and implementation. This

practice is only suitable for code dedicated to that machine, any less

specific code should be written without programming "tricks" as these

only confuse the compiler and hinder its optimising ability. Consider the

following C code sequences to swap two integer variables -

(a)

inti , j ;

i:iAj;

j:iAj;

i:iAj;

(b)

inti ,j, temp;

temp= i;

i = j;

j =temp;

Code sequence (a) uses the exclusive-or operator to swap the value ofi and

j, sequence (b) uses a temporary variable. Code (a) may be more efficient

because it uses one less variable (which will probably equate to a register),

but a copy propagation optimisation pass will usually remove code

sequence (b) from the code, and merely swap all following references to i

and j. The low level optimisation of programs is better left to the compiler,

the programmer should endeavour to find more efficient algorithms and

data structures to build efficient programs, and turn on full optimisation

late in the development cycle. If for some reason the resulting code is

-74-

inefficient the compilation process may be halted (with a compiler switch)

before the assembler pass, the critical parts of the code altered (or

completely rewritten) by hand, and the code then assembled and linked as

before.

-75-

ChapterS
An Optimising Compiler for ARM

The most important piece of software in a high performance computer

system is the compiler, to deliver the maximum hardware performance to

the end user. The hardware can assist the compiler by making many

optimisations possible, which is the reason for the development of RISC,

but a fully optimising compiler for any architecture is a major software

project.

The C language is widely renowned for efficient compilation and

opportunity for optimisation [Kern78], and has been chosen here as the

high level language to be compiled and optimised. Modula 2 and more

lately Oberon have proven to be languages with similar compiler efficiency

to C [Wirt88, Wirt89].

Compiler Building Tools

Four different approaches were investigated for the construction of a fully

optimising C compiler for ARM -

i) Hand crafted compiler and optimiser.

Given enough time, this approach will result in the best compiler.

An intermediate language could be tailored especially for ARM, to

make a common intermediate language for many language front­

ends, allowing the same optimisers and back-end to be used for each

front-end. MIPS Computers used this approach to build the best

commercially available production optimising compilers [Morr88].

-76-

Unfortunately the amount of work required by such a compiler is too

great to be practicable here.

ii) The Portable C Compiler.

The Portable C Compiler (PCC) is a two pass C compiler with a

mixed intermediate code of both assembly code (for control

structures) and tree structures (for expressions). The first pass is

almost machine independent, performing some simple optimisations

on expression trees (constant propagation and strength reduction).

The second pass generates assembly code from the expression trees,

using a technique developed by Sethi and Ullman [Aho86] to produce

efficient code. Porting PCC to a new architecture requires from two to

five thousand lines of the code be written, as well as the code for a

machine dependant peephole optimiser, but high quality compilers

can be produced. Many commercial compilers are based on PCC,

including Acorn's ARM C Compiler.

iii) The GNU C Compiler.

The GNU C Compiler (GCC), from the Free Software Foundation, is

made up from a collection of C programs. Some simple optimisations

are applied to the intermediate code (called Register Transfer

Language, or RTL), and are thus machine independent. Porting the

compiler to a new architecture requires three main files be written:

an instruction output file, a machine description file (architectural

description) and a target description file (implementation

description). Together these files contain between two thousand and

six thousand lines of C code (depending on the target machine). GCC

has been ported to all common architectures: DEC VAX, Motorola

-77-

680x0 and 88000, Intel80x86 and 80860, SUN SPARC, MIPS and

National's 32000 series, and to many more obscure architectures.

iv) The Amsterdam Compiler Kit.

The Amsterdam Compiler Kit (ACK) is the most extensive compiler

building tool available, providing tools to construct all the parts of a

compiler described in Chapter 4: pre-processor; front-end code

generator; peephole optimiser; global optimiser; back-end code

generator; back end peephole optimiser; assembler and linker

[Tane83a]. An intermediate language, called EM code, is generated

by the front-end from a high level language, and transformed into

machine code by the back-end [Tane83b]. The same pre-processor

and front-end optimisers are used by all compilers built with the kit.

Porting the compiler to a new architecture requires between two

thousand and five thousand lines of source code (not C) be written.

Front-ends currently exist for C, Pascal, Modula 2, Basic, Occam

and Ada, with a front-end for Algol 60 under development. Back­

ends exist for DEC PDPll and VAX, Intel80x86, Motorola 680x0,

National32000, MOS Technology 6502 and Zilog Z80 architectures.

The choice of compiler building tool was based on three criteria -

i) Suitability of ARM as a target.

All three compiler kits meet this requirement, for different reasons.

PCC must be suitable, as a PCC based compiler already exists for

ARM. GCC has been targeted to several other RISC machines, with

similar architectures to ARM, and because the flexibility of C can be

utilised when building the back-end, it could almost certainly exploit

the special features of the ARM architecture. ACK's intermediate

-78-

language (EM code) is similar to ARM code (in fact there is a one to

one relationship between many EM instructions and ARM

instructions), but the source language used is rather restrictive, and

may not be able to exploit all the special features of ARM.

ii) Work required to build a compiler.

The original goal of a low cost, high performance compiler must be

met, which is why hand crafting compiler is not possible. PCC

requires significantly more work than either GCC or ACK, because

of the lack of machine independent optimisation (a separate peephole

optimiser needs to be written from scratch). GCC porting requires a

large amount of C code to be written, and while this is very flexible,

the source code for ACK is substantially easier to use (because its

source code was specifically designed for compiler building).

iii) Quality of source code.

Of course the compiler must be able to utilise the ARM architecture.

The Acorn PCC based compiler produces reasonable code, but hand

inspection showed there are many ways in which it could be

improved. By comparing code produced by GCC and ACK for the

Motorola 68000, some insight of their code generation ability is

gained. Without optimisation both GCC and ACK produce similar

quality, similar length code, but when ACK's powerful global and

peephole optimisers are enabled [Bal85, Bal86, McKe89], very high

quality code is produced.

These three factors indicated that ACK would be the most suitable tool to

use, as long as it could be made to generate code that exploits the special

features of the ARM architecture.

-79-

EM code and the Code Generator Generator

EM code, ACK's intermediate code as shown in Appendix B, is a low level

intermediate language. The result of using this low level code is that EM

is only targetable to architectures with certain qualities. The most

important is that each byte in the memory must have a unique address.

EM is a stack based intermediate code, instructions like adi (add integer)

pop two operands from the stack and push the result back on the stack.

EM has several built-in data types: signed and unsigned integer, floating

point numbers, pointers and sets of bits. There are no general purpose

registers - local variables and arguments are addressed via an offset from

the stack frame. There are, however, a few special purpose registers: a

Program Counter, a Local Base (which points to the start of local

variables), a Stack Pointer and a Heap Pointer.

ARM will be the first RISC architecture that ACK has been targeted to.

The strict requirement of RISC architectures for powerful optimising

compilers will test the ability of ACK front-ends to produce good code, any

imperfections will be clear as poor sequences of ARM code will be

translated from poor EM code (poor sequences of CISC code could be

caused by the complex task performed by the CISC code generator). It is

therefore worth examining how the features of ACK can be utilised to

produce a high quality RISC compiler.

The Code Generator Generator (CGG) program uses an architecture

description table to build a code generator for a new architecture. This

description table must be written to produce a back-end for a new

architecture (for example ARM). The description table uses an

-80-

architecture description language to describe the target architecture,

made up of a number of sections -

i) Constant declarations.

Constant values are defined at the beginning of the table, and may be

used throughout the rest of the table. The C pre-processor is used for

an initial pass over the table, so pre-processor constants and macros

can also be defined here. Constants like the size of a stack frame, and

macros to perform range checking on operands are defined here.

ii) Register properties.

The properties to differentiate between different target register

classes are defined in the table. Registers are allocated later in the

table by requesting a register with a property, and the register

allocator will choose the best register with that property. The ARM

table has two main register properties: REG which includes all ARM

registers and ALLOC which are the registers used for temporary

allocation.

· iii) Register definitions.

The properties of each target register are defined in this section,

including the name to be used in the assembly code and the registers

that are available to hold program variables (as opposed to "scratch"

registers, used to hold temporary program values). The ARM table

uses registers zero to six as scratch registers, and registers seven to

eleven as register variables. Register twelve is the Local Base (LB),

register thirteen is the Stack Pointer, register fourteen is the Link

Register and a code generator scratch register, and register fifteen is

the Program Counter.

- 81-

iv) Token definitions.

The types of all instruction operands (called "tokens") are described

in this section. The attributes of each token (for instances base

register and integer offset for a simple addressing mode) are defined,

including their size, type and assembly language output format. The

types of tokens are addresses, integers and all the register properties.

A "cost" value is given to each token, to inform the code generator

about the space and execution time cost of using this operand. The

code generator uses these costs to make the best choice between

multiple token possibilities when generating instructions, and can be

tuned to produce code with a desired balance between code size and

execution speed. The ARM table uses a large number of different

tokens, many of which are designed to utilise ARM's unusual twelve

bit immediate format used with data processing instructions. The

different types of shifted register operands for data processing

instructions are also handled here, along with many base plus

register addressing mode formats. A special token (called bigconst)

has no corresponding ARM operand type, it is used to manipulate a

constant that will not fit in an ARM immediate field. Three extra

pseudo instructions have been added to the assembler to find the

optimal way to actually move, add and subtract a bigconst to a

register value (which in practice involves up to four real ARM

instructions). Just which instruction operand should be defined as a

separate token is certainly not obvious, conversions and comparisons

between different tokens are used later in the table, and the

relationships between tokens is not obvious until they are required

later.

-82-

v) Token sets.

A number of different tokens can be grouped to form a set, to describe

all the operands of one instruction in a compact manner, for example

a load instruction will have several legal addressing modes (tokens)

as one operand, and so all the legal addressing modes for a load will

be grouped into one set. The large number of tokens in the ARM table

are grouped into just a few token sets, for constants, registers, data

processing operands (which are constants, registers and shifted

registers) and addressing modes.

vi) Instruction definitions.

Each instruction in the target architecture is defined in this section,

along with its assembly language output format and its operands

(token sets). Each operand is qualified as read only, read and write or

write only, so that that code generator can tell if the value of an

operand will change. Operands whose value is used to update the

condition flags are marked here also. The instructions also have a

cost field so the compiler can calculate the best code sequence when a

choice is available. The ARM architecture has a potentially large

instruction set, due to the sixteen different conditions that can be

applied to each instruction, far too many combinations of instruction

and condition code to be declared here. The instruction conditions are

not sufficiently like operands to be simply declared as tokens. To solve

this problem new pseudo instructions have been created, called IF,

and sixteen IF instructions have been declared, one with each

condition code. Extra functionality has been added to the assembler to

merge an IF statement's condition with the following instruction, to

make it conditional. This technique makes some patterns a little

longer, but with proper indentation, quite readable. All sixteen types

-83-

of branch are defined explicitly, because each type is used frequently

later. All ARM's data processing instructions had to be defined

twice, once for the version that automatically sets the condition codes,

the other for the ordinary version. Some special pseudo instructions

have been added to manipulate the bigconst token, which is used to

manipulate integers that cannot be encoded in ARM's instructions,

and for integers whose size is unknown at compile time (which are

all actually addresses).

vii) Move definitions.

This part of the table defines the instructions needed to move data

from one place to another, for instance, a load instruction will exist to

load data from an address into a general register. Moves are handled

specially because they enable the code generator to keep track of

register contents. The ARM table has move operations to load a

register with all token types declared in the token section.

viii) Test definitions.

Setting the processor status flags is also handled specially, as some

instructions may do this automatically (as defined in the instruction

definitions), so instructions to explicitly set flags can often be avoided.

The code generator remembers the value that was last used to set the

status flags to decide when explicit condition code setting

instructions are required. The only test rules in the ARM table test a

register and a constant, or two registers.

ix) Stacking Rules.

These rules define how to store the value of a token on the stack. The

-84-

table must contain a stacking rule for every token. Tokens are

usually only pushed on the stack before procedure calls.

x) Coercions.

These rules define how to remove tokens from the stack, and how to

convert between different token types. These ru1es are used to

massage data of different types into the correct type for use with an

instruction. All ARM's coercions are used to move tokens into

registers (and to pop tokens off the stack after procedure calls).

xi) Code patterns.

This is the largest, and most important section in the code generator.

It describes the target instructions that should be generated for each

EM instruction. There is usually a different code sequence depending

on the contents of the stack (i.e. depending on the types of the

instruction operands). Registers may be automatically allocated and

initialised in each pattern, and any result that should be left on the

stack after the instruction has executed is also defined here. The

patterns in the ARM table are quite straight forward, most having

only a few alternates. Take for example the EM add integer (adi)

instruction, which has the following pattern -

pat adi $1==4
with REG regconst
uses reusing %1, reusing %2, ALLOC
gen add %a,%1,%2
yields %a
with regconst REG
uses reusing %1, reusing %2, ALLOC
gen add %a,%2,%1
yields %a
with REG negconst
uses reusing %1, reusing %2, ALLOC
gen add %a,%2, {onlyposconst,0-%1.num}
yields %a

-85-

The first line (pat adi $1==4) declares the EM pattern to be matched

(adi) and checks that the size of the argument ($1==4) is the word

size. The second line (with REG regconst) is a stack contents

constraint: if the top of stack contains a register, and the next stack

location is a register or a constant, then this rule may be used. The

third line (uses reusing %1, reusing %2, ALLOC) allocates a register

of type ALLOC, and states that any registers used in the top of stack

token (%1) or the next stack token (%2) may be reused for this

allocation. The fourth line (gen add %a,%1,%2) defines the ARM

instruction that should be generated (add register %1 to register or

constant %2 and store the result in the newly allocated register %a).

The fifth line defines the result to be placed back on the stack, the

result register, %a. The next four lines produce similar code when

the operands are in the opposite order on the stack, and the last four

lines generate a subtract instruction if the constant is negative. The

expression {onlyposconst,0-%1.num} converts the negative constant

token value into a positive constant token value.

Code patterns may match a string of EM instructions, for instance a

load followed by an increment of the load instruction base register

can be combined into an auto-incrementing addressing mode. The

complex addressing modes of the ARM architecture are easily

catered for here (in fact ARM's addressing modes are quite simple

compared to the CISC addressing modes CGG was designed to

handle). Long sequences of ARM code may also be produced by the

code generator, for example the pattern for an EM divide instruction

is quite long (as shown in Figure 7) because the ARM does not have a

divide instruction. This divide routine is used in two variations: as

in-line code to be inserted directly into the generated code every time

-86-

a divide instruction is used (for speed efficiency) and as the body of a

library routine, called as a subroutine every time a divide instruction

is used (for space efficiency). Each use has different a cost

declaration, so the code generator chooses the most appropriate

method. To divide the integer M by integer N takes 25 cycles if N is

greater than or equal to M and

Olog2Ml- llog2N + 11) x 14 + 11

cycles ifM is greater than N. This algorithm could be made even·

faster (the multiplier of 14 would become 10) by unrolling the two

loops, but the code becomes so long that cache efficiency would suffer

too much for this approach to be effective.

pat dvi $1==4
with REG REG
uses ALLOC,ALLOC,ALLOC
gen eor %c,%2,%1

movs %a,%2
ifmi .

rsb %2,%2, {zeroconst,O}
teq %1, {zeroconst,O}
ifmi .

rsb %1,%1, {zeroconst,O}
mov %b, {onlyposconst,1}

1: cmp %1,%2
ifcc .

mov %1, {lslconst,%1,1}
ifcc .

mov %b, {lslconst,%b,1}
brcc {label,1b}
mov %a, {zeroconst,O}

2: cmp %2,%1
ifcs .

sub %2,%2,%1
ifcs .

add %a,%a,%b
movs %b, {lsrconst,%b,1}
ifne .

mov %1, {lsrconst,%1,1}
brne {label,2b}
teq %c,{zeroconst,O}
ifmi .

rsb %a,%a, {zeroconst,O}
yields %a

Figure 7: ARM Signed Divide Routine

-87-

Integer divisions can also be handled by converting the integer

operands to Floating Point format, performing the divide in the

Floating Point Unit, and converting the result back to integer. This

option is only used if a Floating Point Unit is attached.

Two other files must be written to form a complete code generator, mach.h

and mach.c. The former consists mainly of output routines for integers

and labels in the assembly code, the latter has some short routines to

generate the code for procedure calls and returns. These code sequences

utilise the ARM multiple register load and save instructions to save and

restore registers around procedure calls. The procedure entry sequence is

stmdb sp,lb,sp,link
sub lb,sp,12
sub sp,sp,num locals+12

The first instruction stores the Local Base, Stack Pointer and Link

Register on the stack. The second instruction resets the Local Base to point

to the new procedure's local variable storage, and the third instruction

allocates stack space for the local variables. This sequence takes six clock

cycles. The procedure return statement is just

ldmia lb,lb,sp,pc

which reloads the Local Base, Stack Pointer and Program Counter from

the values stored by the entry sequence, also taking six clock cycles.

Loading the Program Counter from the stored Link Register value

actually makes the subroutine return.

-88-

Global and Peephole Optimisers

The Amsterdam Compiler Kit includes a global optimiser, and a peephole

optimiser. Both these optimisers operate on the EM code produced by the

front-end, and are therefore almost language and machine independent.

The global optimiser does need some knowledge of the target architecture,

mainly for register allocation (such as the number of registers available

and the space and time savings that registers can provide). The global

optimiser performs all of the optimisations discussed in Chapter 4, except

code hoisting, loop fusion and loop splitting [Bal85, Bal86].

The peephole optimiser replaces short sequences of EM instructions with

better (either faster or shorter) sequences. The peephole optimiser is

usually run twice, both before and after global optimisation: the first pass

may create optimisation possibilities for the global optimiser; the second

pass exploits any peephole optimisation possibilities the global optimiser

creates. The peephole optimiser is very fast, so these two passes only take

up a small part of the total compile time [McKe89].

· The Assembler and Linker

An assembler was constructed for ARM, and combined all the features of

a macro assembler and linker into one program. A separate linker was

not justified for this project, multiple assembly files are accepted by the

assembler, and the references between them resolved by the two pass

assembly process. The assembler was constructed using the Unix

scanner and parser tools Lex and Y ace, to provide a flexible system.

-89-

The assembler interprets several pseudo instructions to

declare and initialise blocks of data.

import and export symbols to and from modules.

calculate optimal sequences of add, subtract and shift instructions to

replace constant multiply instructions.

generate multiple instructions to load large constants into a register.

to shift some operations that would normally be found in the compiler

to the assembler (the reason for this functionality shift will be

explained later).

The After-Burner Optimiser

The code generator, when combined with the modified assembly utilises

most of the architectural features of ARM. By visually examining the

quality of the ARM code produced for high level language statements, new

code rules were added to exploit some of the unusual features of ARM, for

instance, the auto-increment addressing modes are very well utilised by

the compiler. The shift operations that can be applied to the second

operand of a data processing instruction are declared as normal tokens

· (even though they declare an operation and an operand this is still

possible), and can therefore appear as pseudo values on the stack. This

makes maximum use of this feature, in a simple and elegant manner.

The code for an EM shift instruction merely pushes one of these shift

tokens on to the stack, and instructions that can utilise the shifted

operand just pop the token off the stack. Instructions that cannot use the

shifted operand force a token coercion, which generates a move

instruction to evaluate the shift operation.

-90-

The sign extension of bytes and halfwords is also optimised by the

compiler: normally a signed-byte load (from the stack) would produce the

following code -

ldrb reg, [sp, 4]
mov reg, reg, lsl 24
mov reg, reg, asr 24

The two shift instructions move the least significant byte to the most

significant end of the register reg, and then sign extend it back to the least

significant end. Two optimisations are possible here: the second move

(shift) can often be combined with a following data processing instruction;

the first move instruction can always be removed by exploiting a special

feature of the ARM memory controller: word loads to a non-word

boundary cause the loaded word to be rotated, so that the byte specified by

the address is in the bottom eight bits of the word. For example, if

Ox12345678 is stored in a word aligned memory location M, a register

loaded from address M will yield Ox12345678; loaded from M + 1 will yield

Ox78123456; loaded from M + 2 will yield Ox56781234 and loaded from M + 3

will yield Ox34567812. This rotation can be utilised to remove the first shift,

by accessing the data from a different memory address to immediately

place it in the most significant byte of a register.

Only the conditional instructions are under utilised, because the code

generator generator gives no clues about the destination of a branch

instruction, so conditional instructions cannot be automatically generated

to replace branch instructions. The IF pseudo instruction is only useful for

code sequences (like the divide routine) embedded in the code generator.

Fortunately it is possible to construct a simple "after-burner" optimiser to

replace branch instructions with conditional code sequences. This after­

burner has been constructed as part of the assembler. The rules it uses

are very simple, it can remove short forward branch instructions by

-91-

replacing them with sequences of conditional instructions, and remove

some compare instructions by setting the condition codes automatically in

a previous instruction. It also replaces sequences of single register load

and store instructions, and in-lines function return sequences for

functions that have more than one point of exit.

Register Allocation

ARM has a rather small register file (15 general purpose registers),

where register twelve is used as the frame pointer, register thirteen is

used as the stack pointer, and register fourteen is used to store procedure

return addresses (the link register). The register allocator in the EM

global optimiser does not make full use of the ARM registers in three

situations

i) The code generator splits the register file into two fixed size

partitions: the registers in the first partition are used for allocation

for expression evaluation, the registers in the second partition are

used to hold register variables. This fixed partitioning means that

some registers cannot be used when they are needed, (in some

situations all the registers reserved for one purpose are not in use

and could be useful for the other purpose).

ii) Registers are not allocated across procedure calls, actual parameters

are pushed onto the stack by the calling procedure and the formal

parameters are removed by the called procedure. Register sized

objects should be passed in registers.

-92-

iii) The information passed from the front end is based on static

instruction counts. In general these are representative of the

dynamic instruction counts, but they are certainly not optimal, and

can be quite wrong. Register allocation based on dynamic instruction

counts could provide considerably better performance.

The after-burner optimiser uses the live-dead variable analysis of the

global optimiser to perform better register allocation. Two variables that

are never "alive" (i.e. in use) at the same time may be placed in the same

register. A variable may even exist in different registers if it is only alive

at certain times. The global optimiser reads a file of machine dependent

information, including how many registers can be allocated for register

variables. Fooling the global optimiser register allocator by declaring a

large number of registers for register variables means that all register

variable candidates are placed in registers, and the actual register

allocation is delayed until assembly time. A conflict graph of the program

is built at assembly time: the nodes of the graph represent registers, and a

path between two nodes exists if the two nodes (registers) are alive at the

same time. The register allocator uses the standard graph colouring

algorithm described in [Chow84, Chow88], which in turn was based on the

ideas in [Chat81, Chat82] to colour (allocate) the nodes (registers) of the

conflict graph. If the graph cannot be coloured (there are not enough

registers to hold all the variables at once), some values must be kept in

memory ("spilled") and reloaded into registers when required. Choosing

which variable(s) to spill is the most complex part of the register allocator,

and is based on the heuristics described in [Bern89]. The static variable

usage information produced by the front end and global optimiser are

used to prioritise the register variable candidates. Because the assembler

-93-

is also the linker, register allocation into library functions is also done

here.

The register allocator can also add profiling information to the resulting

object code, to record dynamic information on variable usage [Wall86].

This number of times each usage of a register variable candidate is

accessed is automatically recorded (and saved into a file) when the

compiled program is executed and can then be fed back into the register

allocator to provide priority information for the variables that are

candidates for register allocation. Those with the highest dynamic

frequency have the highest priority for register allocation. The profiler

output consists of the dynamic references made to each procedure, global

variable and local variable (including parameters). This register

allocation is fast, and provides the optimal solution to the effective

exploitation of the small register file.

A twin pass disassembler has also been written in C. The first pass is

used to mark all branch and jump destinations in the program, so they

can be labelled when they appear in the program, the second pass actually

disassembles the object code. This tool was used to inspect the code

produced by the Acorn compiler, to get some initial insight into the

usefulness of several ARM architectural features, and to inspect the

optimised code produced by the assembler.

The compiler, optimisers, assembler, linker took ten months to construct,

debug and optimise, and together total 13408 lines of source code.

-94-

Compiler Validation

ACK has two methods for ensuring the correctness of compiler back­

ends: a collection of intermediate code sequences, at least one for each EM

instruction, which test the correctness of the assembly code produced.

When writing the back-end, new code rules are added in the same order

as the EM instructions tested in this test suite. When the compiler

generates correct code for each EM instruction the second validation

system (a collection of C programs) is used to test the overall robustness of

the compiled code for entire programs. Some code rules in the ARM table

had to be tested with contrived examples, because they were only used in

rather extraordinary circumstances, for instance the rules for handling

procedures with large stack frames (greater than the 4 KiloByte offset

addressing range of ARM's load and store instructions).

-95-

Chapter6
Evaluating an Architecture

Many tools are required to evaluate the suitability of an architecture as a

target for compiled code. An implementation of the architecture (with an

Operating System to aid program development) to execute compiled code is

essential. A compiler, optimisers, an assembler and a linker are required

to produce high quality code that will exploit the architecture's qualities.

A performance monitor to record information about architectural feature

utilisation, as programs are executed, is also required. Statistical analysis

programs, to summarize the vast amount of data produced by the

performance monitor, present the information necessary for a detailed

architectural evaluation. The hardest "tool" to build is a reasonable subset

of programs that will represent the type of code that will be compiled for

the architecture.

All of these tools have been successfully constructed, and work together to

form an architectural evaluator for the Acorn RISC Machine.

· Architectural Features

The architectural features of ARM that are worthy of detailed study

because of the effect they may have on performance, are -

i) Instruction usage.

ARM has a quite large instruction set by RISC standards, especially

for comparison operations. For maximum performance all

instructions should be well utilised, and repeated sequences of any

instructions should be quite rare (as this would imply missing

-96-

instructions). Load, store and branch instructions require special

attention, to estimate the performance loss due to the lack of delay

slots into which instructions could be scheduled. The effectiveness of

the parallel shift operations, conditional instruction execution and

status flag setting must also be measured.

ii) Memory accessing instructions.

ARM also has a rich set of addressing modes by RISC standards: all

should be utilised, and new addresses formed using instruction

sequences should be rare (as this would imply missing addressing

modes). The utilisation of the multiple register transfer instruction,

and the average number of registers transferred, should also be

measured. The lack of 16 bit (halfword) load and store instructions,

and the lack of a sign extension instruction should also be

investigated.

iii) Register usage.

ARM's register file is small by RISC standards, any performance

loss due to this should be recorded.

iv) Memory interface.

The extra memory bandwidth gained by utilising the sequential

access speeds of DRAM should be measured. The absence of branch

and jump instructions and the presence of multiple register transfer

instructions will help utilise the fast DRAM modes. The effect these

features have, when ARM is connected to a SRAM system should

also be investigated.

-97-

v) Cache effectiveness.

The efficiency of the ARM3 cache must be studied to determine if the

algorithms used for its design are effective, by measuring the hit rate

over a variety of algorithms. The performance loss due to the absence

of a write buffer should also be measured.

To measure the usefulness of each of these features for programs

compiled from a high level language, programs (or program segments)

must be compiled and inspected by eye to ensure that good quality code is

being produced for each statement and data type in the high level

language. If and when a compiler can produce code that can utilise each

of the above features, then the usefulness of each feature can be quantified

by comparing the execution speed of whole programs using the feature, to

the execution speed of the same programs when not using the feature.

Measuring the Quality of an Architecture

There are three distinct ways of measuring the usefulness of these

architectural features-

i) Visual inspection.

The execution of each instruction in a program could be interpreted

by hand, and the results recorded, but for the vast amounts of code

produced by compiling programs this approach would be too long,

error prone and tedious. Furthermore recording information about a

complex component, like the state of the cache, by hand would be far

too complex to be feasible.

-98-

ii) Software emulation.

By constructing a software emulator for the ARM architecture to

create a virtual machine [McKe87], the recording of feature

utilisation could be done automatically. Considerably more code

could be evaluated using this method than could be managed by

hand, making this approach very attractive. The simplicity of ARM

makes this approach quite feasible, but the performance of a

processor only executing a single program is quite different to the

performance of a real computer executing the same program, due to

the performance overhead of operating system duties (as described in

Chapter 4) present in a real computer.

iii) Profiling.

Profiling code could be generated by the compiler, or added by a

separate program, to record feature utilisation as programs execute

on real hardware. The PIXIE program from MIPS Computers uses

this approach to report feature utilisation in their architectures

[MIPS88]. Unfortunately this approach affects memory and cache

performance by altering the memory access patterns, and can

become quite slow as each instruction's characteristics are recorded.

iv) Hardware performance monitor.

A hardware performance monitor (which usually consists of a

completely separate computer) could be coupled to an existing ARM

based computer to record the required information as it was actually

executed. The amount of work in (and the high price of) designing

and building such a monitor prohibits this approach.

-99-

Clearly the second option is the most practicable, and will provide all the

information required about the usefulness of the architectural

characteristics described above that make ARM unique.

Arohltectural Emulation

An architectural emulator has been constructed, it is written inC and

has about 800 lines of source code. At the level required here, an

architectural emulator is basically an interpreter of machine code, with

the state of the processor held in program variables, and the state of the

memory held in a large array. The most significant design aspects of the

emulator are -

i) Instruction Decoder.

The instructions are decoded by the emulator by a two stage method

similar to that used by the real implementations. Bits 28 to 31 contain

the condition setting in each instruction, these are checked first to

see if the instruction should execute at all. If the instruction does

execute, bits 4, 7 and 24 to 27 are used to separate instructions into ten

families: data processing, multiply, branch, load/store, swap,

load/store multiple, software interrupt and the three co-processor

families. Each family of instructions uses the remaining bits in the

instruction to achieve the desired result.

ii) Fake instruction pipeline.

The decode stage of the ARM instruction pipeline is not really

implemented: the instructions are actually decoded and executed in

the third stage. The first and second stage of the pipeline consist of

two unsigned integers, containing the complete instruction word as

- 100-

loaded from the memory array. The pipeline only exists to access

memory in the same way as a real implementation, to ensure the

correctness of cache accesses.

iii) No functional units.

The operations provide by ARM's functional units are simulated

using C code. The data processing (arithmetic) instructions and shift

operations are all expressible with standard C code and the rotate

operation utilises a simple expression. Most of the code is used to

extract or replace flag values (for instance the carry flag) from

register 15 if required by the instruction. Various special conditions

such as the program counter value being altered (to reload the

pipeline from the new address) are handled by flags, and the

appropriate actions taken at the end of the execution stage.

iv) Load and store instructions.

The code to emulate the single register load and store instruction

uses about one sixth of the total code, due to the requirements of

emulating the extensive addressing modes. Although a hardware

implementation of ARM would calculate addressing modes using the

ALU (with simple add and subtract instructions combined with the

barrel shifter), this section of code does not utilise any code used for

the data processing instructions because the subtle differences in

application would require too much checking, resulting in

unnecessary overhead.

v) Fake cache system.

Two procedures are used to access memory, one for load, the other to

store. For reasons of speed the cache emulation is completely fake.

- 101-

The cache is represented by a bit array, each bit indicates if a

corresponding memory location in the memory array is currently

cached. This shortens the access time to cached memory locations,

as in a hardware cache, because really keeping cached data in a

(separate) cache memory would require the cache memory to be

searched for each memory access. Cache misses require a small

amount of code, and the use of some further indexing arrays, to find

a new location for new data.

vi) Approximate Floating Point Emulation.

Two Floating Point Units have developed by Acorn: The first was

based on an ATT WE32206, and suffered from quite poor

performance; the second is still under development, but should offer

performance comparable to competitors' products. The

implementation details have not been released, so for this

performance study the MIPS R6010 Floating Point Accelerator

instruction set and instruction timings have been used, as it is likely

that the new Acorn FPU will have similar performance. The

instruction format has been altered to be compatible with the ARM

co-processor instructions. The instruction set and instruction

format is shown in Appendix C.

vi) Real Time Operating System.

The Operating System library calls that a program makes are passed

to the Operating System that is running the emulator via simple

dummy routines in the emulator. This allows the performance

characteristics of only the program being emulated to be recorded: OS

library routines can be tested by compiling them to replace the

-102-

dummy routines. This feature increases the emulator performance,

and avoids the construction of complete OS libraries.

vii) Extensive event recording.

A large number of global variables are used as counters to record the

usage frequency information for each attribute of the architecture.

The usage of every instruction type and addressing mode, the

number of cache hits and misses, and the usage of individual

registers are just some of the statistics required to provide a detailed

program breakdown, whose simplest format is shown in Figure 8.

This format is designed to be both inspected visually and also digested

by statistical analysis programs to produce summarized data and

graphical results.

Emulator Validation and Performance

The correctness of the emulator was verified by writing an ARM assembly

language program containing statements to utilise every section of

emulator code. This program was run on an ARM based microcomputer,

and on the ARM emulator and the results compared. The only difference

found was when the value of the Program Counter was saved to memory,

on a real ARM the value had been advanced by one instruction before it

was saved, the emulator saved the un-incremented value. Special case

code has not been added to fix this feature, as it is unlikely any code will

rely on it for proper operation. A second program provides an operating

system shell to allow programs to be loaded and saved to and from the

emulator "memory". Extensive program tracing, breakpointing,

debugging and execution reporting facilities make the emulator

environment both functional and usable.

- 103-

+--
1 Instructions executed 950
I Cycles I=876 8=3120 N=1040 Total=5036
+- Cache usage
I Read hits=857 Read misses=242 Write hits=O Write misses=278
+- Register usage
I 0=8 1=12 2=17

a=15 I 8=0 9=0
+- Condition
I EQ=44
I MI=44
I HI=44
I GT=44

AND=1
ADD=12
TST=6
ORR=2

code usage
NE=49 CS=44
PL=44 VS=44
LS=44 GE=44
LE=44 AL=285

OR=2 SUB=7
ADC=7 SBC=1
TEQ=34 CMP=8
MOV=217 BIC=2

3=5
b=28

CC=44
VC=44
LT=44
NV=44

4=449
c=249

5=25
d=O

Figure 8: Emulator Execution Breakdown

6=2
e=22

7=2
f=84

The emulator has a real time performance of between 20,000 and 200,000

instructions per second, with an average of about 100,000 instructions per

second, when executed under SunOS Unix on a Sun Microsystems

SPARCserver 390. This performance has been high enough for successful

execution of the large number of quite complex algorithms required for

the architecture evaluation. The emulator and comnined data collection

software took two months to write and contains 4036 lines of source code

(the emulator itself contains just 800 lines).

-104-

Chapter 7
The Quality of the ARM Architecture

An optimising compiler and an architecture emulation tool having been

constructed to measure the quality of the ARM architecture. The ability of

the compiler to produce good ARM code must confirmed, before the

architecture is evaluated as a target for compiled code. Twenty-two utility

programs from the UNIX Operating System, as shown in Table 5, were

chosen as benchmark programs for the compiler and architecture. Ten of

the programs are quite small (fewer than 400 lines of source code) and

would therefore be expected to have a higher than average cache hit rate;

the remaining twelve programs are quite large (greater than 800 lines of

source code), and would be expected to have lower cache hit rates. In total

2,743,700,000 emulator clock cycles were required to execute these

programs, taking over sixty hours of real time. These programs were

Program Lines of source Description
cal
cat
cb
cmp
compress
csh
diff
eqn
lex
od
sed
sort
strings
sum
tbl
tee
un1q
unpack
we
write

223
270

1205
265

1509
13004
2240
2461
3297

886
1664
1392

140
51

2537
118
145
395
108
247

creates a calender for a month and year
concatenates files
C source code beautifier
file comparison program
file compression program
UNIX command interpreter
find differences in two files
mathematical typesetter
lexical analyser program generator
octal dump program
data stream editor
sorter and collator using LZC algorithm
find text strings in a binary file
calculate a check-sum for a file
table formatter
output replication program
remove or report duplicate lines in a file
Huffman decompression program
character, word and line counter
write a message to another users screen

Table 5: Architectural Benchmarks

- 105-

chosen to give a mix of C operations, such as character, integer, string,

array and record manipulation, control structures, and procedure

calling, characteristic of real world programs. The large programs are

also used to ensure that the cache effectiveness is properly measured,

small programs tend to stay in the cache indefinitely, causing biased

results. Synthetic benchmarks have not been used for three reasons -

i) they do not test the cache miss rate because they are too small.

ii) they are not necessarily representative of real world programs,

despite the claims made by their authors. If representative

benchmarks can be found it is difficult to balance their execution

times so results are not biased towards programs which represent an

insignificant proportion of real world programs.

iii) there are not enough to form a large suite for an architectural

evaluation.

The C programs here should be representative of real world code, because

they are all real world programs. Admittedly some of the programs are

not commonly used (such as "eqn", "sum", "tbl" and "unpack") but an

architecture should be a good target for all code, not just the most common

code, so their inclusion is justified.

Compiler Performance

Initial tests were done to establish the effectiveness of the ACK compiler

compared to the Acorn compiler, by emulating the code produced by both

the ACK compiler and the Acorn compiler (version 3.31). It was hoped the

ACK compiler would produce significantly better (faster) code, due to the

powerful optimisers that have been used. Figure 9 compares the code

produced by ACK compiler to the code produced by the Acorn compiler for

- 106-

the three main instruction classes: ALU, Load/Store and Branch/Jump.

The Acorn compiler has one optimisation switch, the first two columns

show the instruction distribution with and without optimisation. The

optimised Acorn figures are percentages of total instructions, all other

measures are relative to these. The ACK compiler has many separate

optimisation passes, controlled by 14 switches. The figures for this

compiler are split into six separate measures: no optimisation; Peephole

optimisation; Peephole and Global optimisation; Peephole and Target

(after-burner) optimisers; Peephole, Global and Target optimisation and

finally all optimisers including profiled feedback to the register allocator.

140

~ Acorn No Optimisation
1: ...
0 120
(.)

Ill Acorn Optimised

<C EJ ACK No Optimisation

"0
100 Q) E3 ACK Peephole

.!!.!
E D ACK Peephole & Global

-Q. 80 0
El ACK Peephole & Target

1:
::,:) ~ ACK Peephole & Global & Target

- 60 0
m ACK Profiled Reg Alloc

Q)
Cl
co 40
1:
Q)
(.) ...
Q)

20 c.

0
ALU Load/Store Branch/Jump TOTAL

Basic Instruction Type

Figure 9: Acorn and ACK Compiler Performance

The performance of the ACK compiler and optimisers can be compared to

the performance of the Acorn compiler -

- 107-

i) with no optimisation, the code produced is 36% slower than the

optimised Acorn code.

ii) the peephole optimiser improves the performance by a further 12%

(making the code 22% slower than the optimised code produced by the

Acorn compiler)

iii) the global optimiser increases the performance by a further 13% over

the peephole optimiser, making the code 8% slower than the

optimised Acorn code. This speed improvement is largely due to the

register allocation stage of the optimiser (the load/store column has

the largest reduction).

iv) the target (after-burner) optimiser and the peephole optimiser

improve the performance of the un-optimised ACK code by 38%,

making the code 1% faster than the optimised Acorn code. The

peephole and target optimiser are used by default, as they are very

fast and have little impact on the compile time performance of the

compiler.

v) with the peephole, target and global optimisers engaged, the code

produced is 46% faster than the un-optimised ACK code and 7%

faster than the optimised Acorn code.

vi) profiled register allocation increases the performance by a further

3.5%, resulting in the ACK compiler with all optimisations engaged

producing code over 10% faster than the code produced by the Acorn

compiler with full optimisation.

The major performance loss of the un-optimised ACK code is the 17%

caused by the lack of register allocation. When combined, the peephole

and target optimisers produce code very similar to the optimised Acorn

code, in both instructions generated and execution time. The compile time

of the ACK kit (with the peephole and target optimisers engaged) is better

- 108-

than the Acorn compiler with optimisation, but worse than the Acorn

compiler without optimisation (both compilers were compared on an

Acorn Unix Workstation).

Architecture Performance

The effectiveness of the ARM architecture as a compiler target was judged

by measuring the usefulness of the architectural features. Compiling the

programs listed above, and executing each one with the emulator to

record feature utilisation has provided all the results required. The

utilisation of many of ARM's features have been investigated and these

can be grouped into four sections -

i) Instruction Usage.

The usage of every instruction has been recorded, and the frequency

of many pairs of instructions, to uncover evidence of wasted or

missing instructions. Data Processing instructions which only

reference two registers (because they replace one operand with the

result), Data Processing instructions which avoid explicit compare

instructions by setting the condition flags, the distribution of

immediate (constant) values and instructions which use the barrel

shifter to replace explicit shift instructions were all measured and

the results interpreted.

ii) Branch and Conditional Instructions.

The number of instructions conditionally executed was recorded,

including the number of instructions in loops and the number of

instructions in subroutines. The usefulness of a single cycle compare

and branch instruction was also investigated.

-109-

iii) Memory Accessing Instructions.

The usefulness of the ARM addressing modes was recorded,

including the ability of the register allocator to avoid memory

references by holding frequently used values in registers. The

effectiveness of the multiple load and store instructions was also

measured, including the total proportion of memory references for

which they are responsible.

iv) Cache Performance.

The performance of the standard ARM3 cache was recorded, and the

effectiveness of modifying the cache in several ways was studied.

All measurements were made on the code produced by the ACK compiler,

with all optimisation stages engaged, and profiled feedback to the register

allocator enabled. Measurement of feature usefulness was made by

comparing the speed of execution (using the emulator) of programs both

utilising and not utilising each feature. All results are based on the raw

data reported by the emulator, and thus are exact for the C programs

tested, underlining the importance of the sample C programs chosen to

represent real world applications, so that the results presented here will

reflect the performance of the ARM architecture when executing real

world applications. The cache was only enabled for the measurements of

its performance, all other measurements are for a standard ARM2

Instruction Usage

The instructions executed have been grouped into several similar

sections: ALU arithmetic (such as add and subtract), move, compare

- 110-

(including compare negative), ALU bitwise instructions (such as AND and

MVN), load, store, branch and branch with link (subroutine branch). The

relative frequency of each of the instruction classes (as percentages of all

instructions) is shown in Figure 10.

Several aspects of this distribution require further explanation. The high

proportion of move instructions is caused by two factors: firstly, explicit

shift instructions are based upon a move instruction, and account for

about 3% of all instructions: secondly the register allocator replaces some

load instructions with move instructions to pass arguments in registers

(formal parameters that reside in registers are moved to the actual

parameters before the procedure call rather than being loaded from the

stack after the procedure call). This second case also accounts for around

3% of instructions, reducing the actual number of computational move

35

II)
30 c:

0 -(,)
:::J 25
II)
c:

20
I1S -0 15
G)
C)
I1S - 10 c:
G)
(,) ...
G)

c.. 5

0
(.)

·.;::;
Q)

E
..c: -·;::

Q) ~ Q) -g Q) ..c: ~
> II) (.) c:
0

(lj

·~
0 0 c: :::i

~
a. _J - (lj
E - (/) '0
0 iii OJ c:
() (lj

<(Instruction ..c:
(.)
c:
(lj

OJ

Figure 10: Relative Instruction Usage

- 111-

instructions to around 11%. The load word frequency is rather high, and

about 5% of loads and 18% of stores are caused by register spilling in the

register allocator. The twelve available registers are usually enough to

hold all live variables and temporary values, but in about 3% of occasions

three more registers could be effectively utilised by the register allocator

(3% of all instructions were used to spill and reload registers over short

instruction sequences), and as many as eight more could sometimes be

utilised to hold values.

The bitwise operators seem of little use inC code, but the figure is rather

misleading. The programs "sum", "unpack", "od" and "compress" are

responsible for almost all bitwise operations in the twenty-two programs

(bit operations account for about 8% of the instructions in these

programs), so their inclusion in the instruction set is necessary.

Furthermore these instructions may be more prominent in programming

languages like Pascal where they would be used for operations on sets and

arrays of boolean values.

A complete breakdown of the data processing instruction usage is shown

in Figure 11 (as percentages of all instructions). Again the move column

includes around 3% of instructions which are explicit shift instructions,

and another 3% which are part of the procedure calling sequence, and the

proportion of bitwise instructions is low over all programs, but rather

high in some programs. Several instructions are not used by the compiler:

Add with Carry, Subtract with Carry and Reverse Subtract with Carry are

not used by Cas language does not deal with integers greater than 32 bits.

In languages like Lisp with arbitrary precision integers these

instructions would be useful. Setting the condition codes from the result of

- 112-

C\1 .,....
0 0

0 0

>.
a. 0

·.;:::; Q)

::I .~
::2: (/)

::I
C3
><
lU

Figure 11: Data Processing Instructions

a data processing instruction is not common, at around 1%, although

again it would be invaluable for carry propagation when performing

arithmetic on integers larger than 32 bits. The two bit testing instructions

(Test, and Test Equivalence) are not used by the compiler- again these

instructions would be most useful in languages with sets and arrays of

type Boolean such as Pascal. Lastly the Multiply with Accumulate

instruction is never used: the C compiler can produce this instruction if it

finds a Multiply followed by an Add, but this sequence was never executed

in the programs compiled.

Figure 12 illustrates some specific aspects of data processing instruction

operands (as percentages of all data processing instructions). The

compiler can remove 60% of explicit shift instructions by utilising the

- 113-

Ill
c 60 0 -u
::J ...

50 -Ill c

m 40 c
·u;
Ill
Cl)
u 30 0 ...
D.

as 20
as
c -0 10
Cl)

"<t

m
as 0 0 c
Cl) Q) E 0> E 0> Ill
u n; Q) Q) Q) Ill .l!:l ... - E E "'0
Cl) .!!! c:: I'd
D.

"'0
0> ~ >. ~ :0 Q) >. >.

E Q) .0 Q) Q)

a: .0 .0 0.. E E .:::: ~ .:::: :c :E 0 .§ :c ..c::. 0 (/) ..c::. (/)
(/) (/) ~ Q)

Operand Type - :t= - 0>
. !::! - :§ :§ :§ I'd
0.. 0.. _J

0.. X 0.. E X LU E LU

Figure 12: Data Processing Operands

barrel shifter to modify the second operand of data processing

instructions. Most of these shifts were applied to add and reverse subtract

instructions, because it is these instructions (along with move) that are

used to evaluate multiplications by constant values (and to calculate

addresses for elements in two dimensional arrays). Of the remaining 40%

(combined with move instructions), about half were used for constant

multiplications, and the rest are unavoidable because of code sequences

(in C) such as

a = a<< 1 ; /* left shift 'a' by 1 bit */

inside a loop, which force the register containing "a" to be explicitly

shifted, or are used to sign-extend bytes or halfwords. On average the

barrel shifter increases the execution speed of programs by 2.5%, with a

maximum of 14% for the program "sum".

- 114-

Figure 12 also indicates that a two operand instruction format (where the

value in one operand register would be replaced with the result value)

would only be used in 12.79% of data processing instructions, and the

more general three operand format is therefore useful in over 87% of Data

Processing instructions and completely justified.

The percentage of immediate values which could not be encoded as part of

a data processing instruction (using the eight bit, rotated operand format)

is also shown in Figure 12. The low figure of 0.14% is due to the compiler

allocating a register to hold constants that cannot be encoded as an

immediate operand, thus lowering their dynamic frequency.

Figure 13 shows the distribution of immediate operands values used in

data processing instructions (as percentages of all data processing

immediate operands). The value for negative one is caused by the compiler

using the compare negative instruction (with one as the operand) and the

move not instruction (with zero as the operand). Altering the immediate

field to hold a simple twelve bit constant would degrade the performance of

C code by 2%, mainly because the current rotated immedi~te operands are

useful for loading the addresses of global variables and data structures.

Branch and Conditional Instruction Utilisation

Figure 14 shows the distribution of conditional non Branch instructions

(as percentages of all instructions). Nearly 11% of instructions were

conditional, and the condition failed in 58% of these instructions. The

average number of conditional instruction in sequence is 1.4. If

conditional instructions are not utilised, the code size increases by 8%

- 115-

Ill 40 "C CX)
c Ol
CCI

C\1 ...
35 (I) ('I)

D.
0
(I) 30 -.!

"C 25 (I)

E
E 20

iii
15 -0

(I) 10
C)
CCI ('I) -c 5 0
(I)
() C\1 ...
(I)

D. 0
.-

I I

C\1 I I

CX) (0 I

C\1
Immediate Value ('I)

Figure 13: Data Processing Immediate Operands

because of the extra branch instructions required and execution time

increases by 25% (because taken branches are more frequent and take

more cycles than non-taken branches). On top of this saving a further 2%

of instructions were conditional procedure calls (one quarter of all

procedure calls), another feature of the ARM architecture. If the four bits

used to hold the condition in each instruction are not more useful for some

other feature (which is unlikely considering the large performance

increase) then conditional execution of all instructions is a useful feature.

Forward branches (used for IF statements) are nearly 4 time more

frequent than backward branches (used for looping constructs). On

average 2.9 instructions were guarded by an IF branch instruction, which

is rather high because nearly all branches around one or two instructions

are removed and replaced with a conditional instruction sequence (not all

- 116-

14
Ill 13 c
0 12
() 11 :I ...

10 -Ill c 9
8

Ill 7 - 6 0

Gl 5
m 4 Ill -c 3
Gl O'l CX)
() 2 ... <0 <0 ,.._
Gl 0 0

.,....
c. 1 0

0
-' (ij (ij c (ij (ij c ~
~ :::J :::J (lj :::J :::J (lj

tlf c- ..c c- c- ..c c

~ UJ 1- UJ UJ - m
(/) "iii - (/) c 0 Q) 0 z - 0 Q) => (lj (/) -'

Q) (/)
Condition Type

..... Q)
Q)

(!) -' Ia
Q)

(!)

Figure 14: Conditional Non-Branch Instructions

short branches are removed because some are required in complex

boolean expressions to branch around a second compare and branch).

On average just thirty two instructions were executed between procedure

calls, underlining the need for efficient procedure entry and exit

mechanisms.

Almost all conditional branch instructions branch around fewer than one

thousand instructions, and the proportion of conditional branch

instructions that are preceded by compare instructions is over 95%. If a

single cycle compare and branch instruction can be implemented a 10%

performance increase could be made due to the vast reduction in the

number of compare instructions used before branches. The feasibility of

such an instruction is discussed later.

- 117-

Nearly 70% of subroutine branches were made to Operating System

libraries, underlining the importance of register allocation at link time.

Modern UNIX systems are tending towards shared Operating System

libraries, where many processes share the same library code, so this code

dictates the register usage in programs which call these libraries.

Memory Accessing Instructions

The frequency of different addressing modes is shown in Figure 15, (as

percentages of all memory accessing instructions) including the

frequency of the load and store multiple register instructions. The scaled

index and auto increment and auto decrement addressing modes are well

utilised by the compiler, and together provide a 7% performance increase

by saving shift instructions and addition/subtraction instructions (or

both). The twelve bit immediate offset field caters for all immediate offsets,

an eight bit rotated immediate operand (as in the Data Processing

instructions) would not be beneficial. Load instructions are responsible for

73% of single register memory access instructions, stores are the

remaining 27%. This distribution is the same across all addressing

modes.

On average 6.3 registers are saved by each multiple transfer instruction,

making them responsible for over fifty percent of the total memory traffic.

Most of these instructions (97%) use the decrement-before (DB)

addressing mode to access the procedure call stack, the rest replace

sequential single register memory accesses. Fifty-three percent of

multiple register memory accesses were loads. These instructions are

responsible for a 34% performance increase.

- 118-

Ill 45 G)
Ill
Ill 40 G)
(,)
(,)
m 35
:::...
0 30
E
G)

E 25

m 20 -0 15
G)

C'l 10 m c:
G) 5 (,) ...
G)

D. 0

! - X X C) Q) Q)
Q) Q) Q) c: "C.. -$ -o -o ·x >.

OJ E E ·.;::::; OJ
0 Q)

-o ::J

+ + -o E ~ Q)

Q)
Q) Iii l{l 0

l{l 0 -OJ (/) ::J
OJ + <C

Q)

Addressing m9de
(/)
ro

OJ

Figure 15: Addressing Modes

Cache Effectiveness

The ARM3 cache was designed to be completely transparent to all code, so

that the ARM3 processor could be a plug in replacement for the ARM2

processor (although the two processors are not pin compatible), and a

small Operating System patch is all that is required to enable the cache,

and to flush it when a context switch occurs. This requirement forced

rather unusual design parameters, most notably the absence of a write

buffer: the CPU synchronises with external memory for all write

operations. A write buffer would require a new exception handling

mechanism be constructed, as any buffered write operations could cause

an exception (using a bad address or a page fault). The four kilobyte cache

has a 92.11% hit rate for the programs tested.

- 119-

hnproving the ARM architecture

Together the unusual architectural features of ARM increase

performance by 73.5% compared to a more traditional RISC architecture

like MIPS. The most significant performance losses are caused by the lack

of delayed loads, the lack of delayed branches and the high proportion of

branch instructions that are preceded by compare instructions.

The ARM2 architecture cannot accommodate delayed loads, because of

the von Neumann memory architecture, which cannot deliver a new

instruction and a data word in the same cycle. Delayed branches were not

added to the architecture due to the complications they would make to

ARM's simple and elegant architecture. By altering the ARM3

architecture (and therefore the emulator, compiler and optimisers) the

effect these changes have on performance has been measured.

The absence of delayed load instructions is a result of the strict von

Neumann memory system, which cannot deliver a new instruction (to

keep the pipeline full) and a word of data (loaded by a load instruction) in

the same cycle, causing a load delay of one cycle. This delay is also

incurred by the store instructions. The complex addressing modes utilise

this wasted cycle to provide a 7% performance increase. The multiple

register transfer instructions ensure consecutive load or store

instructions to consecutive memory addresses only incur one pipeline

delay (rather than one for each word transferred), to provide a 34%

performance increase.

-120-

Altering the ARM3 architecture to accommodate delayed loads is possible,

but requires several changes to the architecture and additions to the

software-

i) adoption of a Harvard memory architecture, with both the address

and data buses connected to separate caches. Both the instruction

and data caches have 512 word entries (2 KiloBytes).

ii) lengthening of the execution time of the auto-indexing addressing

modes to two cycles to allow time for the base register modification.

This type of load would not require a load delay slot as a new

instruction is not required in the second cycle, so the data can be

loaded then.

iii) adding another pass to the assembler to schedule instructions for the

load delay slot, by looking either before the branch for an instruction

which can be shifted into the load delay slot or after the branch (both

if the branch is taken or not taken) for an instruction which does

depend on the result of the branch.

Implementing delayed loads increased performance by 14.8%. The

multiple register transfer instructions are of little use in this modified

architecture, providing less than 1% more performance, and could be

removed. The multiple register transfer instructions are the main reason

that the architecture has just sixteen registers, where thirty-two would be

more useful. Unfortunately to encode 3 five bit register numbers in a data

processing instruction would require the removal of the condition field,

which would imply a 25% performance loss, outweighing the 3%

performance increase the extra registers could be expected to provide.

- 121-

Delayed branches were not included in the ARM design because of the

complexity they add to the exception handling mechanism (two Program

Counters are required to record the CPU state because an exception can

occur in both the branch delay slot and the branch destination at the same

time), and adding a register for the second program counter, and special

instructions to access it is rather messy. There is a simple way to add the

second Program Counter to the ARM3 architecture however, as one of the

cache controller registers (registers 9 to 16 are currently unused). Adding

delayed branches to the architecture increased performance by 12.3%, and

reduced the performance increase of conditional instructions to about 4%

(because the delay slots after branches around one or two instructions are

very easy to fill), which makes their removal in favour of thirty-two

registers much more controversial.

Both the above architecture changes (delayed loads and delayed branches)

make the resulting architecture incompatible with earlier ARM

architecture. A third architectural change improves the performance of

the ARM architecture and maintains full compatibility with the earlier

architectures. Adding a general purpose, single cycle compare and

branch instruction to the ARM architecture would increase performance

by 10.34%, because most (95%) of branch instructions are preceded by a

compare instruction. It is not possible to fit all the information necessary

into 32 bits for an instruction to replace all compare and branch

instructions, but using one of the undefined instruction formats it is

possible to add an instruction with two registers or a register and a four

bit integer, a (second) four bit compare condition field, and an 1024

instruction offset (1024 instructions could be branched both forwards and

backwards). Adding this less general instruction improved performance

9.84%. A problem with this instruction is the extra hardware required for

- 122-

a second subtract unit to calculate the compare result (as the shifter and

the main ALU would be required for the branch target calculation).

It is possible to restrict the type of branch to just equal and not-equal,

which do not require a full carry propagating subtraction unit for the

comparison, and the branch offset can be increased to 8192 instructions.

This option increased performance by 8. 72%, and does require as much

extra hardware, changes to the instruction field extraction unit, to remove

the branch offset and send it directly to the ALU, and to the ALU buses to

support the two calculations at once. The existing register read ports can

be used for the compare, and the existing ALU for the branch calculation.

The assembly mnemonic is also rather strange due to the two condition

fields (one for the entire instruction, the other for the branch), but this

instruction is probably best produced automatically by the assembler

anyway, as only at this stage is the magnitude of a branch offset known to

decide if it can be utilised. This feature was probably not included in the

ARM architecture because it does not follow the RISC discipline, as there

would be two ways to perform some tasks, complicating the architecture.

As the clock rate of the ARM architecture increases, it is likely that the

execution stage of the instruction pipeline will take the longer than either

the instruction fetch or the instruction decode stages. The barrel shifter

lengthens the critical CPU data path by 15%. The execution stage of the

pipeline could be shortened (by 15%) by removing the barrel shifter from

the main data path, and making instructions which utilise the shifter

take an extra cycle (except branch instructions, which need a two bit left

shift for the branch offset, this could be accommodated in one cycle). Shifts

whose magnitude is held in a register (rather than an immediate

constant) already take an extra cycle because three register reads are

- 123-

required for such an instruction, and the register file has only two read

ports. The instructions which do require an extra cycle are all data

processing instructions that have shift operations as the second operand,

and all load and store instructions that use a scaled addressing mode.

Adding an extra cycle to these instructions resulted in a 24% performance

loss, which is more than would be gained by shortening the data path.

The performance of the cache is shown in Figure 16, in comparison with

other possible strategies. Each column represents the percentage of

memory bandwidth used compared to an un-cached system, which is a

better measure of performance increase than merely the cache hit rate, as

it includes the performance effect of write-back policies. The cache on the

ARM3 processor uses a rather modest 272 900 transistors, a cache twice (8

KiloBytes) or even four times (16 KiloBytes) this size could be constructed

on the CPU chip using the same level of integration used for the Intel

20
"0
Q)

18 !II
:::J

..c 16
"0
'i 14
"0
c:
CIS 12 m
~ 10
0
E 8 Q)

::iE
c: 6

'(Q
::iE 4 -0

2
'fP.

0
Q)

..... IJ) IJ)

~ ~ ~ ..c ~ Q) Q)
(.) - - ~ ~ ~ >. >. ro :::J (I) (I)
() (I)

~ ~ C\J co (0

C')
C') C\J LO

:2:
Q) co (0 >< C\J -a: ·.:: >< ><

<($: co
Cache Type C\J

Figure 16: Cache Strategies

-124-

80860 and 80486 processors, and the Motorola 68040 processors (each

utilise 1.2 million transistors). The usefulness of a write buffer is also

investigated. When designing the ARM3, Acorn performed their own

testing on placement strategies, and these have been confirmed here for

caches up to 16 KiloBytes. The first column is the standard ARM3 cache

(Four KiloBytes, write-through, 64 way set associative, virtual mapped,

random replacement). The second column shows the main memory

bandwidth decrease using a write back strategy, with a write buffer (of 8

words). The third and fourth column indicate the bandwidth decrease 8

and 16 Kilobytes of cache will provide (both including write buffers). The

fourth column shows the decrease over the second column (ARM3 cache

with a write buffer) caused by changing to an LRU replacement strategy

(even though this is difficult with large cache sets). The fifth column

indicates the bandwidth used by a cache with eight thirty two way sets, the

the sixth and seventh column shows the bandwidth of two 128 ways sets

and one 256 way set (fully associative). As can be seen a write buffer

provides the most significant decrease, yielding nearly 5%. The exception

handling required for the write-buffer can be stored as part of the cache

control co-processor. A larger cache is clearly a simple method for using

more chip space to lower the main memory bandwidth used.

The actual performance gained achieved by lowering the main memory

bandwidth used by the processor is dependant on the speed of main

memory in comparison to the speed of cache memory, and how long the

processor must wait before it can access the main memory. A typical

main memory speed is 6 MegaHertz (for a random access), and ARM3

processors are currently available with 30 MegaHertz clock speeds, thus a

main memory access takes the equivalent of five processor (cache) cycles.

Another 80% of a main memory cycle will be typically used for

- 125-

synchronization and bus delays (50% waiting for the start of the next

memory cycle, and the memory bus is heavily utilised by the video

circuitry, causing 30% extra delays). Thus nine processor cycles will be

incurred for each main memory access. By multiplying the percentage

reduction in the main memory bandwidth by this nine cycle delay, the

performance benefit of each caching strategy can be judged. The adoption

of a write buffer would yield approximately 40% more performance, and

combined with the larger cache (of 16 KiloBytes) over 60% more

performance can be gained.

The compact encoding of ARM's instruction set increases cache

performance by a large extent. The lack of many branch instructions, the

shift operations that are combined with data processing instructions, the

complex addressing modes, and the multiple memory transfer

instructions that replace several single register transfers all contribute to

a 45% decrease in the instruction memory bandwidth used (and hence

increase the effectiveness of the cache) compared to more typical RISC

architectures, justifying their inclusion in the architecture, even if

delayed branches and/or delayed loads had been implemented. Programs

with a high number of procedure calls benefit more (up to 55%) from the

compact instructions (due to the increase in the proportion of multiple

register transfer instructions used), making this feature more efficient at

lowering the memory bandwidth used by the processor than the SP ARC

architecture's register windows [Morr88].

- 126-

Conclusion

The Amsterdam Compiler Kit has proven to be a useful tool in the

construction of an optimising compiler for the ARM architecture. The

only optimisation the back-end could not generate was for the utilisation

of conditional instructions. The addition of a new register allocator,

incorporating information passed back from run time profiling to

enhance allocation has resulted in a compiler that produces 10% better

(faster) code than the commercial Acorn compiler, and comparable to the

code produced by a good assembly language programmer.

The software emulator has allowed a large number of real world

programs to be executed to quantify the real world performance of the

architecture when executing code produced from a high level language

compiler.

After examining the results of this study it is difficult to find fault with the

ARM2 architecture, it is very well suited to the low cost applications it was

designed for. The elegance of the architecture makes it suitable for the

assembly language programming often used in small embedded control

systems, as well as a good target for the compiled code executed by high

performance computers. The architecture makes full use of available

memory bandwidth, and the page mode access speed of modern DRAM

memory.

Delayed Load instructions have not been implemented in the ARM

architecture because the inexpensive von Neumann memory architecture

cannot deliver two words in one cycle required for a delayed load. The von

Neumann architecture also forces two cycles for Store instructions. The

- 127-

complex addressing modes efficiently use 20% of the second cycle of load

and store instructions, but a load delay slot can be at least 60% utilised.

The multiple register transfer instructions yield a 34% performance

increase by exploiting the paged mode access speed of the memory.

Delayed branch instructions have not been implemented because of the

complexity they add to the ARM architecture. The conditional execution of

instructions removes practically all short branch instructions (those

skipping around one or two instructions), consequently replacing 37% of

all branch instructions. A delayed branch instruction (which can be

added to the ARM3 architecture) would increase performance by 12%.

A single cycle compare and branch instruction would yield 8.7% more

performance, but its rather specific use tends to disobey the RISC

philosophy of one fast way to do each task.

The barrel shifter is justified as part of the main execution data path - the

number of explicit shift instructions it removes yields better performance

(24%) than the lengthening of the clock cycle it causes (15%) when the

processor is performance bound by the rate at which it can execute

instructions (which would occur if the instruction fetch and decode times

were to decrease at high clock rates).

The number of instructions required to execute a given task is reduced by

45% because of the compact encoding of ARM instructions. Although

these instructions take longer to decode, an ARM2 implementation will

always be limited by the memory access time, so the decrease in required

memory bandwidth is much more significant. This feature alone

- 128-

outstrips the memory bandwidth that could be save by using register

windows (as in the SPARC architecture).

The ARM3 architecture maintains full user code compatibility with

ARM2 (Operating System code must be patch to enable the cache, and

perform cache flushing when a processor context switch occurs). This

compatibility causes a performance loss, mainly due to the lack of a cache

write buffer- all store instructions cause the processor to slow to the

speed of the main memory while the data is written to memory. On a

typical implementation with a cache memory five times faster than the

random access speed of the main memory, a write buffer increases

performance by 40%, and combined with a 16 KiloByte cache a

performance increase of 60% can be achieved.

The commercial computer market illustrates that ARM based machines

can achieve better price/performance ratios than other computers due the

low cost of the processor and memory required to gain good performance.

Other computers suffer from the need for dedicated logic to lower the

workload on their complex processors, and require large, expensive

caches to match ARM's versatility and low memory requirements. ARM's

simple elegance allows it to be produced very inexpensively, and its low

memory bandwidth makes a future ARM based multi-processor an

attractive possibility.

- 129-

Acknowledgements

I wish to thank many people who have helped me with this research. Dr

Michael Maclean supervised the work and proof read many drafts of the

text. Dr Bruce McKenzie for his many helpful comments on compiler

design and the philosophy of the Amsterdam Compiler Kit.

The staff and graduates of the Computer Science department at

Canterbury, who have provided much support, both intellectually and

otherwise. Mr Kevin Rodgers, for his foresight in purchasing an ARM

based computer for Shirley Boys' High School (keeping his head while

others were losing theirs). Dr Pi]:) Forer and the staff of the Geography

department at Canterbury for allowing me unlimited access to their lab of

Acorn computers. To Acorn Computer (UK) Ltd, for answering many

queries, and for designing and supporting the ARM processor.

Mr Graham Stairmand for his dedicated proof reading, many helpful tips

and a great deal of encouragement.

Financial support was supplied by a Battersby Scholarship in 1989 from

Datacom Ltd.

Finally to my girlfriend, Angela, for her encouragement over the past four

years, and to my mother her support during my six years of tertiary

education, and to my father, for making me be both theoretical and

practical.

- 130-

Bibliography

[Aho86] Aho, A.V. Sethi, R. and Ullman, J.D. Compilers Principles,

Techniques and Tools. Addison Wesley, Reading,

Massachusetts, 796p

[AMD87] Advanced Micro Devices Am29000 Streamlined Instruction

Processor Users Manual. Advanced Micro Devices Inc. 901

Thompson Place, PO Box 3453, Sunnyvale, CA 94088

[Ausl82] Auslander, M.A. and Hopkins, M. An Overview of the PL.B

compiler. Proceedings of the SIGPLAN '82 Symposium on

Compiler Construction SIGPLAN Notices 17(6) June 1982

[Bal85] Bal, H.E. The design and implementation of the EM Global

Optimiser. Rapport IR-99 Vrije Universiteit Amsterdam

March 1985

[Bal86] Bal, H. and Tanenbaum, A.S. Language- and Machine­

Independent Global Optimisation on Intermediate Code.

Computer Languages 11(2) pp105-1211986

[Bern89] Bernstein, D., Goldin, D.Q., Golumbic, M.C., Krawczyk, H.,

Mansour, Y., Nahshon, I. and Pinter, R.Y. Spill code

minimisation techniques for optimising compilers. SIGPLAN

Notices 24(7) July 1989

[Brig89] Briggs. P., Cooper. K.D., Kennedy. K. and Torczon. L.

Coloring Heuristics for Register Allocation. SIGPLAN

Notices 24(7) pp275-284 1989.

[Cate88] Cates. R. Processor Architecture Considerations for

Embedded Controller Applications. IEEE Micro 8(3) pp28-37

June 1988

- 131-

[Chat81] Chatin, G.J., Auslander, M.A. Chandra, A.K. Cocke, J.

[Chat82]

Hopkins, M.E. and Markstein, P.W. Register Allocation Via

Graph Colouring. Computer Languages 6 pp47-57 1981

Chatin, G.J. Register Allocation and Spilling via Graph

Colouring. Proceedings of the SIGPLAN '82 Symposium on

Compiler Construction SIGPLAN Notices 17(6) June 1982

[Chow84] Chow, F. and Hennessey, J. Register Allocation by Priority­

based Coloring. Proceedings of the SIGPLAN '84 Symposium

on Compiler Construction SIGPLAN Notices 19(6) June 1984

[Chow88] Chow, F.C. Minimizing Register Usage Penalty at Procedure

Calls. Proceeding of the SIGPLAN '88 Conference on

Programming Language Design and Implementation June

22-24 1988 pp 85-94

[Ditz87] Ditzel, D.R., McLellan, H.R. and Berenbaum, A.D. The

Hardware Architecture of the CRISP Microprocessor.

Proceedings of the 14th Annual Symposium on Computer

Architecture, pp309-319

[Dobb88] Dobbs, C., Reed, P. and Ng, T. Supercomputing on Chip:

Genesis of the 88000. VLSI Systems Design May 1988 pp24-33

[Furb89] Furber, S.B. VLSI RISC Architecture and Implementation.

Marcel Dekker New York, 365p.

[Gros88] Gross, T.R., Hennessy, J.L., Przybylski, S.A. and Rowen, C.

[Heid90]

Measurement and Evaluation of the MIPS Architecture and

Processor. ACM Transactions on Computer Systems, 6(3)

pp229-257,August1988

Reid. J. Mac World Magazine 7(5), MacWorld

Communications, 501 Second Street, San Franciso pp280-289,

Mayl990

- 132-

[Henn82] Hennessy, J.L., Jouppi, N., Przybylski, S.A., Rowen, C.,

Gross, T.R., Baskett, F. and Gill, J. MIPS: A Microprocessor

Architecture. IEEE Micro Special Report pp17-22 1982

[Henn84] Hennessey, J.L. VLSI Processor Architecture. IEEE

Transactions on Computer 33(12) pp1221-1246

[IBM90] IBM Australia Ltd. The RISC System I 6000 Range. Customer

Information Issue 46 February 1990

[Jagg90] Jaggar, D.V. Fast Ziv-Lempel Decoding on a RISC.

Submitted for Publication with IEEE Transactions on

Computers.

[Jone88] Jones, D. The MC88100 RISC processor. Electronic

Engineering May 1988 pp45-55

[Jone89] Jones, D. MC88100 RISC. Electronic and Wireless World

94(1929) pp637-642 July 1988

[Kane88] Kane, G. MIPS RISC Architecture. Prentice Hall. Englewood

Cliffs N .J, 288p

[Kern78] Kernighan, B.W. and Ritchie, D.M. The C Programming

Language. Prentice Hall Englewood Cliffs NJ, 227p

[Lehr89] Lehrer, M.A. Second Generation RISC Processor. Electronic

and Wireless World 94(1929) pp689-691 July 1988

[McKe87] McKerrow, P. Performance Measurement of Computer

Systems. Addison Wesley, Reading, Massachusetts, pp65-97

[McKe89] McKenzie, B.J. Fast Peephole Optimisation Techniques.

Software Practice and Experience 19(2) pp1151-1162,

December 1989

[Mele89] Melear, C. The Design of the 88000 RISC Family. IEEE Micro

9(2) pp26-38 1989

[MIPS88] MIPS Computer Ssystems Inc. Language Programmer's

Guide. pp4.1-4.37 MIPS Computer Systems Inc.

- 133-

[Morr88] Morrison, N. Register Windows us. General Registers: A

Comparison of Memory Access Patterns. Technical Report,

University of California, Berkeley, California.

[Moto85] Motorola Inc. MC68020 32 Bit Microprocessor User's Manual.

Prentice Hall, Englewood Cliffs. NJ, 438p

[Patt80] Patterson, D.A. and Ditzel, D.R. The Case for the Reduced

Instruction Set Computer. Computer Architecture News 8(6)

pp25-33

[Patt81] Patterson, D.A. and Sequin, C. RISC I: A Reduced

Instruction Set VLSI Computer. Proceeding of the 8th Annual

Symposium on Computer Architecture, ACM SIGARCH

Computer Architecture News 9(3) pp443-457 (1981)

[Patt82] Patterson, D.A. and Sequin, C. A VLSI RISC. IEEE Computer

15(9) ppB-18 September 1982

[Patt85] Patterson, D. Reduced Instruction Set Computers.

Communications of the ACM 28(1) pp 8-211985

[Radi82] Radin, G. The 801 Minicomputer. SIGPLAN Notices 17(4) 1982

[Rowe88] Rowen, C., Johnson, M. and Ries, P. The MIPS R3010

Floating-Point Coprocessor. IEEE Micro June 1988 pp53-62

[Smit82] Smith, A.J. Cache Memories. ACM Computing Surveys 14(3)

pp 4 73--530 1987

[SPEC90] Standard Performance Evaluation Co-Operative Newsletter,

2(1) 1990 25p

[Sun87a] Sun Microsystems Inc. A RISC tutorial. Sun Technical

Report, 15p

[Sun87b] Sun Microsystems Inc. The SPARC™ Architecture Manual,

Version 7 Revision A, October 22, 1987

- 134-

[Tami83] Tamir, Y. and Sequin, C. Strategies for Managing the

Register File in RISC. IEEE Transactions on Computers

32(11) pp977-989 1983

[Tane78] Tanenbaum. A.S. Implications of Structured Programming

for Machine Architecture. Communications of the ACM, 21(3)

pp237 -246 1978

[Tane83a] Tanenbaum, A.S., van Staveren, E.G., Keizer, E.G. and

Stevenson, J.W. A Practical Toolkit for making Portable

Compilers. Communications of the ACM 26(9) pp654-660

September 1983

[Tane83b] Tanenbaum, A.S., van Staveren, E.G., Keizer, E.G. and

Stevenson, J.W. Description of a Machine Architecture for

use with Block Structured Languages. Rapport IR-81 Vrije

Universiteit, Amsterdam August 1983

[VTI89] VLSI Technology Limited. VL86C010 32-Bit RISC MPU and

Peripherals User's Manual. Prentice Hall Englewood Cliffs

NJ 188p.

[Wall86] Wall, D.W. Global Register Allocation at Link Time.

SIGPLAN Notices 21(7) 264-275 1986

[Wall88] Wall, D.W., Register Window us. Register Allocation.

Proceedings of the SIGPLAN '88 pp67-78

[Wils89a] Wilson, R. RISC CPUs tune up for embedded computing.

Computer Design, May 1989 pp 36-38

[Wils89b] Wilson, R. The ARM3 RISC Processor. RISC User

July/August 1989 pp7-9

[Wirt88] Wirth, N. From Modula to Oberon. Software Practice and

Experience 18(7) pp661-670 1988

[Wirt89] Wirth, N. and Gutknecht, J. The Oberon System. Software

Practice and Experience 19(9) pp857-893 1989

- 135-

Appendix A
ARM 3 Instruction Set Format

Data Processing

Operand is a shifted register
31 28 Z7 ~ 25 2A 21 20 19 16 15 1211 0

I Cond I 00 II I Opcode lSI Rm Rd I Operand

I = 0 : Operand is a shifted register
Shift amount is an immediate 11 76 543 0

Shift amount is in a register

Sh : Type of shift 00
01
10
11

ROR with Shamt 0

LSL
LSR
ASR
ROR
RRX

I Shamt I Sh I 0 I Rn I
Shamt: Register holding shift amount

11 876 543 0

I Shamt I 0 I Sh Ill Rn I
Shamt : Register holding shift amount

Logical Shift Left
Logical Shift Right
Arithmetic Shift Right
Rotate Right
Rotate Right with Extend

I = 1 : Shift amount is an immediate 11 8 7 0

I Shamt I Immediate I
Cond: Condition Code OpCode : Operation Code

0000 EQ Equal 0000 AND
0001 NE Not Equal 0001 EOR
0010 cs Carry Set 0010 SUB
0011 cc Carry Clear 0011 RSB
0100 MI Minus 0100 ADD
0101 PL Plus 0101 ADC
0110 vs Overflow Set 0110 SBC
0111 vc Overflow Clear 0111 RSC
1000 HI Higher 1000 TST
1001 LS Lower or Same 1001 TEQ
1010 GE Greater than or Equal 1010 CMP
1011 LT Less Than 1011 CMN
1100 GT Greater Than 1100 ORR
1101 LE Less than or Equal 1101 MOV
1110 AL Always 1110 BIC
1111 NV Never 1111 MVN

S : Set condtion flags
Rm : Left hand side operand register number
Rd : Destination register number

- 136-

Logical AND
Exclusive OR
Subtract
Reverse Subtract
Addition
Addition with Carry
Subtract with Carry
Reverse Subtract with Carry
Test
Test Equality
Compare
Compare Negative
Logical OR
Move
Bit Clear
Move Negative

Multiply

31 28 'Z7 22 212019 16 15 12 11 8 7 4 3 0

I Cond I 000000 IAISI Rd I Ra I Rn I 1001 I Rm I
A :Multiply with Accumulate

Branch

31 28 'Z7 25 24 23

I Cond I 101 ILl PC Offset

L: Branch with link

Single Data Transfer

M 28'Z7~25242322ID2019 ffi15 12ll

I Cond I 0111 IPfUIBI\VILI Rm Rd I

P : Pre I Post indexing Post=O , Pre=l
U: Up I Down bit Down=O, Up=l
B :Byte I Word bit Word=O, Byte=l
W : Writeback flag
L :Load I Store bit Store=O, Load=l

Swap Data

M 28'Z7 2322ID2019 ffi15

I Cond I 00010 IBI 00 I Rm I

Rm : Memory address register
Rs : Source regiser
Rd : Destination register

Block Data Transfer

M 28'Z7 25242322ID2019 ffi15

I Cond I 100 IPfUISI\VILI Rn I

S : Load processor status flags

- 137-

1211

Rd I

Offset

4 3

00001001

Register List

0

0

0

Rs

0

Software lnteiTUpt

31 28 'Z7 24 Z3 0

I Cond I 1111 I SWI Number

Co-Processor operations

31 28 'Z7 24 Z3 2D 19 16 15 12 11 8 7 5 4 3 0

I Cond I 1110 I CPop I CRn I CRd I CP# jCPinfjOj CRm I
CPop : Co-Processor OpCode
CRm,CRn : Co-Processor operand registers
CRd : Co-Processor Destination register
CP# : Co-Processor Number
CPinf: Co-Processor Information

Co-Processor Register Transfers

31 28 'Z7 24 Z3 21 2D 19 . 16 15 1211 87 543 0

I Cond I 1110 jCPopjLI CRn I Rd I CP# ICPinfjlj CRm I
L :Load I Store bit To Co-Processor=O, From Co-Processor=l

Co-Processor Data Transfers

31 28 'Z7 25 24 Z3 22 21 2D 19 1615 1211 87 0

I Cond I 110 IPfUINIWILI Rn I CRd CP# I Offset

N: Transfer Length

Undefined Instructions
31 28 'Z7 25 24 54 3 0

I Cond I 011 I xxxxxxxxxxxxxxxxxxxx 111 xxxx 1

31 28 'Z7 24 Z3 8 7 4 3 0

I Cond 0011 I xxxxxxxxxxxxxxxx I 1001 xxxx I

- 138-

AppendixB
EM Instruction Set

Group 1-Load

LOC c Load constant (i.e. push one word onto the stack)
LDC d Load double constant (push two words)
LOL 1 Load word at 1-th local (1<0) or parameter 0>=0)

LOE g Load external word g
LIL 1 Load word pointed to by 1-th local or parameter
LOF f Load offsetted. (top of stack+ fyield address)
LAL 1 Load address of local or parameter
LAE g Load address of external
LXL n Load lexical (address of LB n static levels back)

LXA n Load lexical (address of AB n static levels back)
LOI s Load indirect s bytes (address is popped from the stack)
LOS i Load indirect, i-byte integer on top of stack gives object size
LDL 1 Load double local or parameter
LDE g Load double external
LDF f Load double offsetted (top of stack+ fyield address)
LPI p Load procedure identifier

Group 2- Store

STL 1 Store local or parameter

STE g Store external
SIL 1 Store into word pointed to by 1-th local or parameter
STF f Store offsetted
STI s Store indirect s bytes (pop address, then data)

STS .
Store indirect, i-byte integer on top of stack gives object size 1

SDL 1 Store double local or parameter
SDE g Store double external
SDF f Store double offsetted

- 139-

Group 3- Integer Arithmetic

ADI 1 Addition

SBI 1 Subtraction

MLI 1 Multiplication

DVI . Division 1

RMI 1 Remainder

NGI
. Negate (two's complement) 1

SLI i Shift left

SRI 1 Shift right

Group 4- Unsigned arithmetic

ADU 1 Addition

SBU i Subtraction

MLU 1 Multiplication

DVU 1 Division

RMU 1 Remainder

SLU 1 Shift left

SRU 1 Shift right

Group 5- Floating point arithmetic

ADF 1 Floating add

SBF 1 Floating subtract

MLF 1 Floating multiply

DVF 1 Floating divide

NGF 1 Floating negate

FIF 1 Floating multiply and split integer and fraction part

FEF 1 Split floating number in exponent and fraction part

Group 6- Pointer arithmetic

ADP f

ADS

SBS 1

Add c to pointer on top of stack

Add i-byte value and pointer

Subtract pointers and push difference as size i integer

- 140-

Group 7- Increment/decrement/zero

INC Increment top of stack by 1

INL 1 Increment local or parameter

INE g Increment external

DEC Decrement top of stack by 1

DEL 1 Decrement local or parameter

DEE g Decrement external

ZRL 1 Zero local or parameter

ZRE g Zero external

ZRF 1 Load a floating zero of size i

ZER 1 Load i zero bytes

Group 8- Convert

en Convert integer to integer

CUI Convert unsigned to integer

CFI Convert floating to integer

CIF Convert integer to floating

CUF Convert unsigned to floating
CFF Convert floating to floating
CIU Convert integer to unsigned
cuu Convert unsigned to unsigned

CFU Convert floating to unsigned

Group 9- Logical

AND 1 Boolean and on two groups of i bytes

lOR
. Boolean inclusive or on two groups ofi bytes 1

XOR
. Boolean exclusive or on two groups of i bytes 1

COM 1 Complement (one's complement of top i bytes)

ROL 1 Rotate left a group of i bytes

ROR 1 Rotate right a group ofi bytes

- 141-

Group 10- Sets

INN 1

SET 1

Bit test on i byte set (bit number on top of stack)
Create singleton i byte set with bit n on (n is top of stack)

Group 11-Array

LAR 1

SAR 1

AAR 1

Load array element, descriptor contains integers of size i

Store array element

Load address of array element

Group 12- Compare

CMI
CMF

CMU
CMS

CMP
TLT
TLE

TEQ

TNE
TGE
TGT

1 .
1

1

1

Compare i byte integers. Push -ve, zero, +ve for <, = or >
Compare i byte reals

Compare i byte unsigneds
Compare i byte sets. can only be used for equality test.

Compare pointers
True if less, i.e. iff top of stack < 0
True ifless or equal, i.e. iff top of stack <= 0

True if equal, i.e. iff top of stack = 0

True if not equal, i.e. iff top of stack non zero
True if greater or equal, i.e. iff top of stack >= 0

True if greater, i.e. iff top of stack> 0

Group 13- Branch

BRA b Branch unconditionally to label b

BLT b Branch less (pop 2 words, branch if top > second)

BLE b Branch less or equal

BEQ b Branch equal
BNE b Branch not equal
BGE b Branch greater or equal
BGT b Branch greater
ZLT b Branch less than zero (pop 1 word, branch negative)

ZLE b Branch less or equal to zero
ZEQ b Branch equal zero

ZNE b Branch not zero

- 142-

ZGE b
ZGT b

Branch greater or equal zero
Branch greater than zero

Group 14-Procedure call

CAl
CAL p

LFR s
RET z

Call procedure (procedure instance identifier on stack)

Call procedure (with name p)

Load function result
Return (function result consists of top z bytes)

Group 15-Miscellaneous

ASP f Adjust the stack pointer by f

ASS . Adjust the stack pointer by i-byte integer 1

BLM z Block move z bytes; first pop dest. addr, then source addr
BLS 1 Block move, size is in i-byte integer on top of stack
CSA . Case jump; address of jump table at top of stack 1

CSB .
Table lookup jump; address of jump table at top of stack 1

DUP s Duplicate top s bytes
DUS 1 Duplicate top i bytes
FIL g File name (external4 :=g)
LIM Load 16 bit ignore mask
LIN n Line number (external 0 := n)
LNI Line number increment
LOR r Load register (O=LB, 1=SP, 2=HP)
MON Monitor call
NOP No operation
RCK 1 Range check; trap on error
RTT Return from trap

SIG Trap errors to proc nr on top of stack
SIM Store 16 bit ignore mask
STR r Store register (O=LB, 1=SP, 2=HP)
TRP Cause trap to occur (Error number on stack)

- 143-

Key to instruction arguments

Argument Rationale

c 1-word constant

d 2-word constant

1 local offset
g global label
f fragment offset
n positive counter

s object size (word multiple)

z object size (zero or word multiple)

1 object size (word multiple or fraction)

p procedure identifier

b label number

r register number (0,1 or 2)

no operand

-144-

Appendix C
Floating Point Accelerator Instruction Set

Floating Point operations

31 28 'Z7 24 Z3 20 19 16 15 12 11 8 7 5 4 3 0

I Cond I 1110 I FP op I FPRn I FPRd I 0 I F lOIFPRm I
Cond : As shown in Appendix A
FP op : FPU OpCode
FPRm,FPRn : FPU operand registers
FPRd : FPU Destination register
F: Format

FPop : Floating Point Operation
0000 ADD.fmt Add
0001 SUB .fmt Sub
0010 MUL.fmt Multiply
0011 DIV.fmt Divide
0100 SQRT.fmt Square Root
0101 ABS.fmt Absolute Value
0110 MOV.fmt Move
0111 NEG.fmt Negate

Cycles

1000 CVT.S.fmt Convert to single floating-point
1001 CVT.D.fmt Convert to double floating-point
1010 CVT.W.fmt Convert to binary fixed-point
1011 CMP.fmt Compare

Format : Operand type
000 S single precision floating point
001 D double precision floating point
010 W single precision fixed point

Floating Point Unit Register Transfers

Precision
Single Double

2 2
2 2
4 5

12 19
23 42
1 1
1 1
1 1
1 1
1 1
1 1
2 2

31 28 'Z7 24 Z3 21 20 19 16 15 12 11 87 543 0

I Cond I 1110 I 0 ILl 0 I Rd I 0 I 0 I1IFPRm I

L :Load I Store bit To FPU=O, From FPU=l

Floating Point Unit Data Transfers

31 28 'Z7 25 24 Z3 22 21 20 19 1615 12 11 87

I Cond I 110 IP(UINIWILI Rn I FPRd I 0 Offset

P : Pre I Post indexing Post=O , Pre=l
N : Transfer Length
L :Load I Store bit Store=O, Load=l
FPRd : FPU register.

- 145-

U: Up I Down bit Down=O, Up=l
W: Writeback flag
Rn :ARM Base register
Offset :Integer addresses offset

0

	Abstract
	Contents
	Figures and Tables
	Chapter 1
	The Central Processing Unit
	The Instruction Set
	Microcode
	Registers
	The Memory
	Advancing Technology

	Chapter2
	Improving Performance
	Cycles per Instruction
	Time per Cycle
	Instructions per Task
	RISC Development
	Commercial RISC Designs
	Other Commercial RISC Architectures

	Chapter 3
	Architecture Characteristics
	The hnpact on Performance
	Evaluating an architecture

	Chapter4
	The Operating System
	Compilers
	Application Programs

	Chapter 5
	Compiler Building Tools
	EM code and the Code Generator Generator
	Global and Peephole Optimisers
	The Assembler and Linker
	The After-Burner Optimiser
	Register Allocation
	Compiler Validation

	Chapter 6
	Architectural Features
	Measuring the Quality of an Architecture
	Architectural Emulation
	Emulator Validation and Performance

	Chapter 7
	Compiler Performance
	Architecture Performance
	Instruction Usage
	Branch and Conditional Instruction Utilisation
	Memory Accessing Instructions
	Cache Effectiveness
	Improving the ARM architecture

	Conclusion
	Acknowledgements
	Bibliography
	Appendices
	Appendix A
	Appendix B
	Appendix C

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 555.78, -3.88 Width 107.67 Height 846.77 points
 Origin: bottom left

 1
 0
 BL

 Both
 1
 AllDoc
 347

 CurrentAVDoc

 555.7844 -3.881 107.665 846.7709

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 145
 144
 145

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -46.56, 817.67 Width 678.00 Height 27.16 points
 Origin: bottom left

 1
 0
 BL

 Both
 1
 AllDoc
 347

 CurrentAVDoc

 -46.5579 817.6711 677.9987 27.1588

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 145
 144
 145

 1

 HistoryItem_V1
 TrimAndShift

 Range: all even numbered pages
 Trim: none
 Shift: move right by 17.01 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1812
 271
 Fixed
 Right
 17.0079
 0.0000

 Even
 58
 AllDoc
 155

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 11
 145
 143
 72

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 17.01 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1812
 271
 Fixed
 Right
 17.0079
 0.0000

 Odd
 58
 AllDoc
 155

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 26
 145
 144
 73

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 145 to page 145
 Mask co-ordinates: Left bottom (551.10 550.93) Right top (585.05 614.95) points

 0
 551.1008 550.9346 585.0493 614.9517

 145
 SubDoc
 145

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 144
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 145 to page 145
 Mask co-ordinates: Left bottom (532.67 449.09) Right top (590.87 563.54) points

 0
 532.6717 449.0893 590.869 563.544

 145
 SubDoc
 145

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 144
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 145 to page 145
 Mask co-ordinates: Left bottom (549.16 261.89) Right top (588.93 387.98) points

 0
 549.1609 261.8879 588.9291 387.9821

 145
 SubDoc
 145

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 144
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 144 to page 144
 Mask co-ordinates: Left bottom (32.17 116.39) Right top (173.79 253.16) points

 0
 32.1748 116.3946 173.7882 253.1583

 144
 SubDoc
 144

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 143
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 144 to page 144
 Mask co-ordinates: Left bottom (175.73 460.73) Right top (671.38 700.31) points

 0
 175.7281 460.7288 671.3753 700.3077

 144
 SubDoc
 144

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 143
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 143 to page 143
 Mask co-ordinates: Left bottom (541.40 277.41) Right top (580.20 389.92) points

 0
 541.4012 277.4072 580.1995 389.922

 143
 SubDoc
 143

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 142
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 144 to page 144
 Mask co-ordinates: Left bottom (542.37 290.99) Right top (575.35 379.25) points

 0
 542.3712 290.9866 575.3497 379.2525

 144
 SubDoc
 144

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 143
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 143 to page 143
 Mask co-ordinates: Left bottom (548.19 144.52) Right top (613.18 289.05) points

 0
 548.191 144.5233 613.178 289.0467

 143
 SubDoc
 143

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 142
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 143 to page 143
 Mask co-ordinates: Left bottom (536.55 392.83) Right top (625.79 648.90) points

 0
 536.5515 392.8319 625.7874 648.9001

 143
 SubDoc
 143

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 142
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 142 to page 142
 Mask co-ordinates: Left bottom (531.70 474.31) Right top (605.42 619.80) points

 0
 531.7017 474.3081 605.4183 619.8014

 142
 SubDoc
 142

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 141
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 142 to page 142
 Mask co-ordinates: Left bottom (562.74 90.21) Right top (647.13 309.42) points

 0
 562.7403 90.2058 647.1264 309.4157

 142
 SubDoc
 142

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 141
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 142 to page 142
 Mask co-ordinates: Left bottom (546.25 265.77) Right top (621.91 426.78) points

 0
 546.251 265.7677 621.9075 426.7803

 142
 SubDoc
 142

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 141
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 141 to page 141
 Mask co-ordinates: Left bottom (544.31 264.80) Right top (660.71 351.12) points

 0
 544.3112 264.7978 660.7057 351.1238

 141
 SubDoc
 141

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 140
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 141 to page 141
 Mask co-ordinates: Left bottom (535.58 449.09) Right top (595.72 579.06) points

 0
 535.5815 449.0893 595.7188 579.0633

 141
 SubDoc
 141

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 140
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 140 to page 140
 Mask co-ordinates: Left bottom (532.67 484.98) Right top (604.45 606.22) points

 0
 532.6717 484.9776 604.4484 606.222

 140
 SubDoc
 140

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 139
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 140 to page 140
 Mask co-ordinates: Left bottom (311.52 320.09) Right top (349.35 386.04) points

 0
 311.5219 320.0852 349.3501 386.0422

 140
 SubDoc
 140

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 139
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 140 to page 140
 Mask co-ordinates: Left bottom (547.22 301.66) Right top (593.78 386.04) points

 0
 547.221 301.6561 593.7789 386.0422

 140
 SubDoc
 140

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 139
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 139 to page 139
 Mask co-ordinates: Left bottom (539.46 242.49) Right top (614.15 383.13) points

 0
 539.4614 242.4888 614.1479 383.1323

 139
 SubDoc
 139

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 138
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 139 to page 139
 Mask co-ordinates: Left bottom (534.61 454.91) Right top (589.90 645.02) points

 0
 534.6116 454.909 589.899 645.0203

 139
 SubDoc
 139

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 138
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 138 to page 138
 Mask co-ordinates: Left bottom (536.55 443.27) Right top (660.71 701.28) points

 0
 536.5515 443.2696 660.7057 701.2776

 138
 SubDoc
 138

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 137
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 137 to page 137
 Mask co-ordinates: Left bottom (560.80 389.92) Right top (618.03 566.45) points

 0
 560.8004 389.922 618.0277 566.4539

 137
 SubDoc
 137

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 136
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 137 to page 137
 Mask co-ordinates: Left bottom (532.67 488.86) Right top (580.20 594.58) points

 0
 532.6717 488.8575 580.1995 594.5826

 137
 SubDoc
 137

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 136
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 136 to page 136
 Mask co-ordinates: Left bottom (560.80 307.48) Right top (696.59 540.27) points

 0
 560.8004 307.4758 696.5941 540.2651

 136
 SubDoc
 136

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 135
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 136 to page 136
 Mask co-ordinates: Left bottom (535.58 535.42) Right top (606.39 617.86) points

 0
 535.5815 535.4153 606.3883 617.8615

 136
 SubDoc
 136

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 135
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 136 to page 136
 Mask co-ordinates: Left bottom (335.77 357.91) Right top (343.53 371.49) points

 0
 335.7708 357.9135 343.5304 371.4929

 136
 SubDoc
 136

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 135
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 135 to page 135
 Mask co-ordinates: Left bottom (536.55 538.33) Right top (568.56 604.28) points

 0
 536.5515 538.3252 568.56 604.2821

 135
 SubDoc
 135

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 134
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 135 to page 135
 Mask co-ordinates: Left bottom (330.92 363.73) Right top (346.44 370.52) points

 0
 330.921 363.7332 346.4403 370.5229

 135
 SubDoc
 135

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 134
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 134 to page 134
 Mask co-ordinates: Left bottom (336.74 362.76) Right top (345.47 367.61) points

 0
 336.7407 362.7633 345.4703 367.613

 134
 SubDoc
 134

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 133
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 134 to page 134
 Mask co-ordinates: Left bottom (534.61 509.23) Right top (570.50 587.79) points

 0
 534.6116 509.2265 570.4999 587.7929

 134
 SubDoc
 134

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 133
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 133 to page 133
 Mask co-ordinates: Left bottom (333.83 362.76) Right top (349.35 369.55) points

 0
 333.8308 362.7633 349.3501 369.5529

 133
 SubDoc
 133

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 132
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 133 to page 133
 Mask co-ordinates: Left bottom (556.92 433.57) Right top (622.88 508.26) points

 0
 556.9205 433.57 622.8775 508.2566

 133
 SubDoc
 133

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 132
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 133 to page 133
 Mask co-ordinates: Left bottom (531.70 521.84) Right top (588.93 562.57) points

 0
 531.7017 521.8359 588.9291 562.574

 133
 SubDoc
 133

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 132
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 132 to page 132
 Mask co-ordinates: Left bottom (534.61 536.39) Right top (551.10 571.30) points

 0
 534.6116 536.3853 551.1008 571.3036

 132
 SubDoc
 132

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 131
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 131 to page 131
 Mask co-ordinates: Left bottom (339.65 362.76) Right top (346.44 368.58) points

 0
 339.6506 362.7633 346.4403 368.583

 131
 SubDoc
 131

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 130
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 131 to page 131
 Mask co-ordinates: Left bottom (513.27 530.57) Right top (559.83 557.72) points

 0
 513.2726 530.5656 559.8304 557.7243

 131
 SubDoc
 131

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 130
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 130 to page 130
 Mask co-ordinates: Left bottom (530.73 503.41) Right top (572.44 619.80) points

 0
 530.7318 503.4068 572.4398 619.8014

 130
 SubDoc
 130

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 129
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 129 to page 129
 Mask co-ordinates: Left bottom (533.64 451.03) Right top (567.59 618.83) points

 0
 533.6416 451.0292 567.5901 618.8315

 129
 SubDoc
 129

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 128
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 129 to page 129
 Mask co-ordinates: Left bottom (326.07 361.79) Right top (351.29 373.43) points

 0
 326.0712 361.7933 351.29 373.4328

 129
 SubDoc
 129

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 128
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 128 to page 128
 Mask co-ordinates: Left bottom (535.58 511.17) Right top (592.81 623.68) points

 0
 535.5815 511.1664 592.8089 623.6812

 128
 SubDoc
 128

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 127
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 128 to page 128
 Mask co-ordinates: Left bottom (330.92 356.94) Right top (352.26 371.49) points

 0
 330.921 356.9435 352.26 371.4929

 128
 SubDoc
 128

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 127
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 127 to page 127
 Mask co-ordinates: Left bottom (532.67 508.26) Right top (566.62 588.76) points

 0
 532.6717 508.2566 566.6201 588.7628

 127
 SubDoc
 127

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 126
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 127 to page 127
 Mask co-ordinates: Left bottom (336.74 362.76) Right top (345.47 372.46) points

 0
 336.7407 362.7633 345.4703 372.4628

 127
 SubDoc
 127

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 126
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 126 to page 126
 Mask co-ordinates: Left bottom (339.65 361.79) Right top (350.32 368.58) points

 0
 339.6506 361.7933 350.3201 368.583

 126
 SubDoc
 126

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 125
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 126 to page 126
 Mask co-ordinates: Left bottom (531.70 496.62) Right top (572.44 606.22) points

 0
 531.7017 496.6171 572.4398 606.222

 126
 SubDoc
 126

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 125
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 125 to page 125
 Mask co-ordinates: Left bottom (564.68 163.92) Right top (641.31 309.42) points

 0
 564.6802 163.9224 641.3066 309.4157

 125
 SubDoc
 125

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 124
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 125 to page 125
 Mask co-ordinates: Left bottom (531.70 492.74) Right top (583.11 568.39) points

 0
 531.7017 492.7373 583.1094 568.3938

 125
 SubDoc
 125

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 124
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 125 to page 125
 Mask co-ordinates: Left bottom (336.74 360.82) Right top (351.29 369.55) points

 0
 336.7407 360.8234 351.29 369.5529

 125
 SubDoc
 125

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 124
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 124 to page 124
 Mask co-ordinates: Left bottom (332.86 362.76) Right top (349.35 368.58) points

 0
 332.8609 362.7633 349.3501 368.583

 124
 SubDoc
 124

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 123
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 124 to page 124
 Mask co-ordinates: Left bottom (529.76 509.23) Right top (588.93 603.31) points

 0
 529.7618 509.2265 588.9291 603.3122

 124
 SubDoc
 124

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 123
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 123 to page 123
 Mask co-ordinates: Left bottom (139.84 361.79) Right top (154.39 367.61) points

 0
 139.8398 361.7933 154.3891 367.613

 123
 SubDoc
 123

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 122
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 123 to page 123
 Mask co-ordinates: Left bottom (534.61 510.20) Right top (555.95 639.20) points

 0
 534.6116 510.1965 555.9506 639.2005

 123
 SubDoc
 123

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 122
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 123 to page 123
 Mask co-ordinates: Left bottom (340.62 361.79) Right top (348.38 370.52) points

 0
 340.6205 361.7933 348.3802 370.5229

 123
 SubDoc
 123

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 122
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 122 to page 122
 Mask co-ordinates: Left bottom (330.92 363.73) Right top (350.32 367.61) points

 0
 330.921 363.7332 350.3201 367.613

 122
 SubDoc
 122

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 121
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 122 to page 122
 Mask co-ordinates: Left bottom (535.58 502.44) Right top (569.53 602.34) points

 0
 535.5815 502.4368 569.53 602.3422

 122
 SubDoc
 122

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 121
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 121 to page 121
 Mask co-ordinates: Left bottom (533.64 479.16) Right top (596.69 624.65) points

 0
 533.6416 479.1579 596.6887 624.6512

 121
 SubDoc
 121

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 120
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 121 to page 121
 Mask co-ordinates: Left bottom (328.01 355.00) Right top (417.25 372.46) points

 0
 328.0111 355.0036 417.247 372.4628

 121
 SubDoc
 121

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 120
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 120 to page 120
 Mask co-ordinates: Left bottom (534.61 492.74) Right top (551.10 581.00) points

 0
 534.6116 492.7373 551.1008 581.0032

 120
 SubDoc
 120

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 119
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 120 to page 120
 Mask co-ordinates: Left bottom (337.71 363.73) Right top (344.50 370.52) points

 0
 337.7107 363.7332 344.5004 370.5229

 120
 SubDoc
 120

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 119
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 120 to page 120
 Mask co-ordinates: Left bottom (328.01 366.64) Right top (406.58 370.52) points

 0
 328.0111 366.6431 406.5775 370.5229

 120
 SubDoc
 120

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 119
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 119 to page 119
 Mask co-ordinates: Left bottom (531.70 487.89) Right top (565.65 586.82) points

 0
 531.7017 487.8875 565.6501 586.8229

 119
 SubDoc
 119

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 118
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 118 to page 118
 Mask co-ordinates: Left bottom (536.55 498.56) Right top (574.38 574.21) points

 0
 536.5515 498.557 574.3798 574.2135

 118
 SubDoc
 118

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 117
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 118 to page 118
 Mask co-ordinates: Left bottom (339.65 362.76) Right top (349.35 372.46) points

 0
 339.6506 362.7633 349.3501 372.4628

 118
 SubDoc
 118

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 117
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 117 to page 117
 Mask co-ordinates: Left bottom (534.61 488.86) Right top (579.23 583.91) points

 0
 534.6116 488.8575 579.2296 583.9131

 117
 SubDoc
 117

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 116
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 117 to page 117
 Mask co-ordinates: Left bottom (292.12 359.85) Right top (425.98 378.28) points

 0
 292.1228 359.8534 425.9766 378.2826

 117
 SubDoc
 117

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 116
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 116 to page 116
 Mask co-ordinates: Left bottom (535.58 502.44) Right top (578.26 591.67) points

 0
 535.5815 502.4368 578.2596 591.6727

 116
 SubDoc
 116

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 115
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 116 to page 116
 Mask co-ordinates: Left bottom (310.55 347.24) Right top (420.16 371.49) points

 0
 310.5519 347.244 420.1569 371.4929

 116
 SubDoc
 116

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 115
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 115 to page 115
 Mask co-ordinates: Left bottom (311.52 364.70) Right top (405.61 393.80) points

 0
 311.5219 364.7032 405.6075 393.8018

 115
 SubDoc
 115

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 114
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 114 to page 114
 Mask co-ordinates: Left bottom (534.61 504.38) Right top (553.04 584.88) points

 0
 534.6116 504.3767 553.0407 584.883

 114
 SubDoc
 114

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 113
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 114 to page 114
 Mask co-ordinates: Left bottom (336.74 354.03) Right top (358.08 403.50) points

 0
 336.7407 354.0337 358.0797 403.5014

 114
 SubDoc
 114

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 113
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 113 to page 113
 Mask co-ordinates: Left bottom (337.71 352.09) Right top (348.38 379.25) points

 0
 337.7107 352.0938 348.3802 379.2525

 113
 SubDoc
 113

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 112
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 113 to page 113
 Mask co-ordinates: Left bottom (536.55 517.96) Right top (570.50 602.34) points

 0
 536.5515 517.9561 570.4999 602.3422

 113
 SubDoc
 113

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 112
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 112 to page 112
 Mask co-ordinates: Left bottom (536.55 503.41) Right top (566.62 584.88) points

 0
 536.5515 503.4068 566.6201 584.883

 112
 SubDoc
 112

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 111
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 112 to page 112
 Mask co-ordinates: Left bottom (336.74 364.70) Right top (348.38 370.52) points

 0
 336.7407 364.7032 348.3802 370.5229

 112
 SubDoc
 112

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 111
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 111 to page 111
 Mask co-ordinates: Left bottom (331.89 364.70) Right top (345.47 368.58) points

 0
 331.8909 364.7032 345.4703 368.583

 111
 SubDoc
 111

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 110
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 111 to page 111
 Mask co-ordinates: Left bottom (533.64 513.11) Right top (583.11 596.52) points

 0
 533.6416 513.1063 583.1094 596.5225

 111
 SubDoc
 111

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 110
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 110 to page 110
 Mask co-ordinates: Left bottom (334.80 363.73) Right top (348.38 373.43) points

 0
 334.8008 363.7332 348.3802 373.4328

 110
 SubDoc
 110

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 109
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 110 to page 110
 Mask co-ordinates: Left bottom (535.58 527.66) Right top (564.68 584.88) points

 0
 535.5815 527.6556 564.6802 584.883

 110
 SubDoc
 110

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 109
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 109 to page 109
 Mask co-ordinates: Left bottom (520.06 502.44) Right top (589.90 606.22) points

 0
 520.0623 502.4368 589.899 606.222

 109
 SubDoc
 109

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 108
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 109 to page 109
 Mask co-ordinates: Left bottom (393.97 367.61) Right top (413.37 374.40) points

 0
 393.9681 367.613 413.3672 374.4027

 109
 SubDoc
 109

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 108
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 109 to page 109
 Mask co-ordinates: Left bottom (331.89 361.79) Right top (347.41 385.07) points

 0
 331.8909 361.7933 347.4102 385.0722

 109
 SubDoc
 109

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 108
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 108 to page 108
 Mask co-ordinates: Left bottom (332.86 364.70) Right top (348.38 368.58) points

 0
 332.8609 364.7032 348.3802 368.583

 108
 SubDoc
 108

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 107
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 108 to page 108
 Mask co-ordinates: Left bottom (533.64 486.92) Right top (574.38 594.58) points

 0
 533.6416 486.9175 574.3798 594.5826

 108
 SubDoc
 108

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 107
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 107 to page 107
 Mask co-ordinates: Left bottom (528.79 535.42) Right top (576.32 584.88) points

 0
 528.7919 535.4153 576.3196 584.883

 107
 SubDoc
 107

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 106
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 106 to page 106
 Mask co-ordinates: Left bottom (333.83 363.73) Right top (348.38 371.49) points

 0
 333.8308 363.7332 348.3802 371.4929

 106
 SubDoc
 106

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 105
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 106 to page 106
 Mask co-ordinates: Left bottom (536.55 517.96) Right top (565.65 576.15) points

 0
 536.5515 517.9561 565.6501 576.1534

 106
 SubDoc
 106

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 105
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 105 to page 105
 Mask co-ordinates: Left bottom (526.85 527.66) Right top (583.11 583.91) points

 0
 526.8519 527.6556 583.1094 583.9131

 105
 SubDoc
 105

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 104
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 105 to page 105
 Mask co-ordinates: Left bottom (339.65 364.70) Right top (346.44 375.37) points

 0
 339.6506 364.7032 346.4403 375.3727

 105
 SubDoc
 105

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 104
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 104 to page 104
 Mask co-ordinates: Left bottom (243.63 228.91) Right top (300.85 276.44) points

 0
 243.625 228.9094 300.8524 276.4373

 104
 SubDoc
 104

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 103
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 104 to page 104
 Mask co-ordinates: Left bottom (535.58 520.87) Right top (568.56 594.58) points

 0
 535.5815 520.866 568.56 594.5826

 104
 SubDoc
 104

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 103
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 103 to page 103
 Mask co-ordinates: Left bottom (537.52 485.95) Right top (594.75 580.03) points

 0
 537.5214 485.9476 594.7488 580.0333

 103
 SubDoc
 103

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 102
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 103 to page 103
 Mask co-ordinates: Left bottom (339.65 361.79) Right top (347.41 376.34) points

 0
 339.6506 361.7933 347.4102 376.3427

 103
 SubDoc
 103

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 102
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 103 to page 103
 Mask co-ordinates: Left bottom (322.19 366.64) Right top (358.08 382.16) points

 0
 322.1914 366.6431 358.0797 382.1624

 103
 SubDoc
 103

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 102
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 102 to page 102
 Mask co-ordinates: Left bottom (522.00 522.81) Right top (581.17 567.42) points

 0
 522.0022 522.8059 581.1694 567.4238

 102
 SubDoc
 102

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 101
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 101 to page 101
 Mask co-ordinates: Left bottom (524.91 528.63) Right top (619.97 592.64) points

 0
 524.912 528.6256 619.9677 592.6426

 101
 SubDoc
 101

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 100
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 101 to page 101
 Mask co-ordinates: Left bottom (331.89 363.73) Right top (350.32 370.52) points

 0
 331.8909 363.7332 350.3201 370.5229

 101
 SubDoc
 101

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 100
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 100 to page 100
 Mask co-ordinates: Left bottom (523.94 502.44) Right top (601.54 582.94) points

 0
 523.9421 502.4368 601.5385 582.9431

 100
 SubDoc
 100

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 99
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 100 to page 100
 Mask co-ordinates: Left bottom (315.40 353.06) Right top (414.34 384.10) points

 0
 315.4017 353.0637 414.3371 384.1023

 100
 SubDoc
 100

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 99
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 99 to page 99
 Mask co-ordinates: Left bottom (302.79 350.15) Right top (416.28 381.19) points

 0
 302.7923 350.1538 416.277 381.1924

 99
 SubDoc
 99

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 98
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 99 to page 99
 Mask co-ordinates: Left bottom (533.64 526.69) Right top (558.86 563.54) points

 0
 533.6416 526.6857 558.8605 563.544

 99
 SubDoc
 99

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 98
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 98 to page 98
 Mask co-ordinates: Left bottom (337.71 363.73) Right top (346.44 370.52) points

 0
 337.7107 363.7332 346.4403 370.5229

 98
 SubDoc
 98

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 97
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 98 to page 98
 Mask co-ordinates: Left bottom (536.55 517.96) Right top (562.74 556.75) points

 0
 536.5515 517.9561 562.7403 556.7543

 98
 SubDoc
 98

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 97
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 97 to page 97
 Mask co-ordinates: Left bottom (532.67 526.69) Right top (567.59 556.75) points

 0
 532.6717 526.6857 567.5901 556.7543

 97
 SubDoc
 97

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 96
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 95 to page 95
 Mask co-ordinates: Left bottom (372.63 464.61) Right top (604.45 598.46) points

 0
 372.6291 464.6086 604.4484 598.4624

 95
 SubDoc
 95

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 94
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 95 to page 95
 Mask co-ordinates: Left bottom (339.65 362.76) Right top (348.38 368.58) points

 0
 339.6506 362.7633 348.3802 368.583

 95
 SubDoc
 95

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 94
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 94 to page 94
 Mask co-ordinates: Left bottom (536.55 506.32) Right top (572.44 568.39) points

 0
 536.5515 506.3167 572.4398 568.3938

 94
 SubDoc
 94

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 93
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 94 to page 94
 Mask co-ordinates: Left bottom (46.72 375.37) Right top (106.86 419.02) points

 0
 46.7241 375.3727 106.8613 419.0207

 94
 SubDoc
 94

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 93
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 94 to page 94
 Mask co-ordinates: Left bottom (340.62 362.76) Right top (348.38 369.55) points

 0
 340.6205 362.7633 348.3802 369.5529

 94
 SubDoc
 94

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 93
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 93 to page 93
 Mask co-ordinates: Left bottom (334.80 363.73) Right top (346.44 369.55) points

 0
 334.8008 363.7332 346.4403 369.5529

 93
 SubDoc
 93

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 92
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 93 to page 93
 Mask co-ordinates: Left bottom (537.52 471.40) Right top (591.84 597.49) points

 0
 537.5214 471.3983 591.8389 597.4924

 93
 SubDoc
 93

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 92
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 92 to page 92
 Mask co-ordinates: Left bottom (394.94 368.58) Right top (408.52 372.46) points

 0
 394.938 368.583 408.5174 372.4628

 92
 SubDoc
 92

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 91
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 92 to page 92
 Mask co-ordinates: Left bottom (522.00 517.96) Right top (556.92 581.00) points

 0
 522.0022 517.9561 556.9205 581.0032

 92
 SubDoc
 92

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 91
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 91 to page 91
 Mask co-ordinates: Left bottom (522.97 536.39) Right top (555.95 553.84) points

 0
 522.9721 536.3853 555.9506 553.8445

 91
 SubDoc
 91

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 90
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 90 to page 90
 Mask co-ordinates: Left bottom (319.28 354.03) Right top (420.16 373.43) points

 0
 319.2815 354.0337 420.1569 373.4328

 90
 SubDoc
 90

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 89
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 89 to page 89
 Mask co-ordinates: Left bottom (248.47 462.67) Right top (269.81 467.52) points

 0
 248.4748 462.6687 269.8138 467.5184

 89
 SubDoc
 89

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 88
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 89 to page 89
 Mask co-ordinates: Left bottom (334.80 362.76) Right top (344.50 372.46) points

 0
 334.8008 362.7633 344.5004 372.4628

 89
 SubDoc
 89

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 88
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 88 to page 88
 Mask co-ordinates: Left bottom (536.55 537.36) Right top (586.99 628.53) points

 0
 536.5515 537.3552 586.9892 628.531

 88
 SubDoc
 88

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 87
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 88 to page 88
 Mask co-ordinates: Left bottom (334.80 362.76) Right top (347.41 376.34) points

 0
 334.8008 362.7633 347.4102 376.3427

 88
 SubDoc
 88

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 87
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 87 to page 87
 Mask co-ordinates: Left bottom (323.16 354.03) Right top (361.96 375.37) points

 0
 323.1613 354.0337 361.9596 375.3727

 87
 SubDoc
 87

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 86
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 87 to page 87
 Mask co-ordinates: Left bottom (510.36 496.62) Right top (640.34 674.12) points

 0
 510.3627 496.6171 640.3367 674.1189

 87
 SubDoc
 87

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 86
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 86 to page 86
 Mask co-ordinates: Left bottom (522.00 387.98) Right top (602.51 587.79) points

 0
 522.0022 387.9821 602.5085 587.7929

 86
 SubDoc
 86

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 85
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 86 to page 86
 Mask co-ordinates: Left bottom (335.77 363.73) Right top (345.47 368.58) points

 0
 335.7708 363.7332 345.4703 368.583

 86
 SubDoc
 86

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 85
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 85 to page 85
 Mask co-ordinates: Left bottom (391.06 365.67) Right top (410.46 371.49) points

 0
 391.0582 365.6731 410.4573 371.4929

 85
 SubDoc
 85

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 84
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 85 to page 85
 Mask co-ordinates: Left bottom (331.89 364.70) Right top (345.47 370.52) points

 0
 331.8909 364.7032 345.4703 370.5229

 85
 SubDoc
 85

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 84
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 85 to page 85
 Mask co-ordinates: Left bottom (522.00 503.41) Right top (671.38 701.28) points

 0
 522.0022 503.4068 671.3753 701.2776

 85
 SubDoc
 85

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 84
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 84 to page 84
 Mask co-ordinates: Left bottom (334.80 364.70) Right top (346.44 369.55) points

 0
 334.8008 364.7032 346.4403 369.5529

 84
 SubDoc
 84

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 83
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 84 to page 84
 Mask co-ordinates: Left bottom (527.82 521.84) Right top (573.41 602.34) points

 0
 527.8219 521.8359 573.4098 602.3422

 84
 SubDoc
 84

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 83
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 83 to page 83
 Mask co-ordinates: Left bottom (257.20 315.24) Right top (294.06 342.39) points

 0
 257.2044 315.2355 294.0627 342.3942

 83
 SubDoc
 83

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 82
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 83 to page 83
 Mask co-ordinates: Left bottom (335.77 363.73) Right top (347.41 369.55) points

 0
 335.7708 363.7332 347.4102 369.5529

 83
 SubDoc
 83

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 82
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 83 to page 83
 Mask co-ordinates: Left bottom (524.91 505.35) Right top (596.69 638.23) points

 0
 524.912 505.3467 596.6887 638.2306

 83
 SubDoc
 83

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 82
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 83 to page 83
 Mask co-ordinates: Left bottom (534.61 183.32) Right top (689.80 277.41) points

 0
 534.6116 183.3215 689.8044 277.4072

 83
 SubDoc
 83

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 82
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 82 to page 82
 Mask co-ordinates: Left bottom (335.77 363.73) Right top (349.35 368.58) points

 0
 335.7708 363.7332 349.3501 368.583

 82
 SubDoc
 82

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 81
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 82 to page 82
 Mask co-ordinates: Left bottom (519.09 482.07) Right top (668.47 719.71) points

 0
 519.0923 482.0678 668.4654 719.7068

 82
 SubDoc
 82

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 81
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 82 to page 82
 Mask co-ordinates: Left bottom (555.95 169.74) Right top (704.35 436.48) points

 0
 555.9506 169.7422 704.3538 436.4799

 82
 SubDoc
 82

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 81
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 81 to page 81
 Mask co-ordinates: Left bottom (557.89 167.80) Right top (672.35 320.09) points

 0
 557.8905 167.8023 672.3452 320.0852

 81
 SubDoc
 81

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 80
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 81 to page 81
 Mask co-ordinates: Left bottom (339.65 362.76) Right top (345.47 370.52) points

 0
 339.6506 362.7633 345.4703 370.5229

 81
 SubDoc
 81

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 80
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 80 to page 80
 Mask co-ordinates: Left bottom (339.65 359.85) Right top (346.44 369.55) points

 0
 339.6506 359.8534 346.4403 369.5529

 80
 SubDoc
 80

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 79
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 80 to page 80
 Mask co-ordinates: Left bottom (536.55 475.28) Right top (611.24 646.96) points

 0
 536.5515 475.2781 611.238 646.9601

 80
 SubDoc
 80

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 79
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 80 to page 80
 Mask co-ordinates: Left bottom (549.16 179.44) Right top (691.74 818.64) points

 0
 549.1609 179.4417 691.7443 818.6423

 80
 SubDoc
 80

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 79
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 79 to page 79
 Mask co-ordinates: Left bottom (329.95 362.76) Right top (404.64 373.43) points

 0
 329.951 362.7633 404.6376 373.4328

 79
 SubDoc
 79

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 78
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 79 to page 79
 Mask co-ordinates: Left bottom (525.88 505.35) Right top (632.58 637.26) points

 0
 525.882 505.3467 632.5771 637.2606

 79
 SubDoc
 79

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 78
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 79 to page 79
 Mask co-ordinates: Left bottom (573.41 126.09) Right top (680.10 669.27) points

 0
 573.4098 126.0942 680.1049 669.2691

 79
 SubDoc
 79

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 78
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 78 to page 78
 Mask co-ordinates: Left bottom (335.77 364.70) Right top (346.44 369.55) points

 0
 335.7708 364.7032 346.4403 369.5529

 78
 SubDoc
 78

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 77
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 78 to page 78
 Mask co-ordinates: Left bottom (521.03 511.17) Right top (544.31 561.60) points

 0
 521.0322 511.1664 544.3112 561.6041

 78
 SubDoc
 78

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 77
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 77 to page 77
 Mask co-ordinates: Left bottom (523.94 528.63) Right top (658.77 739.11) points

 0
 523.9421 528.6256 658.7659 739.1059

 77
 SubDoc
 77

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 76
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 76 to page 76
 Mask co-ordinates: Left bottom (537.52 528.63) Right top (592.81 570.33) points

 0
 537.5214 528.6256 592.8089 570.3337

 76
 SubDoc
 76

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 75
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 75 to page 75
 Mask co-ordinates: Left bottom (148.57 255.10) Right top (544.31 553.84) points

 0
 148.5694 255.0982 544.3112 553.8445

 75
 SubDoc
 75

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 74
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 74 to page 74
 Mask co-ordinates: Left bottom (504.54 479.16) Right top (572.44 554.81) points

 0
 504.543 479.1579 572.4398 554.8144

 74
 SubDoc
 74

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 73
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 74 to page 74
 Mask co-ordinates: Left bottom (562.74 153.25) Right top (655.86 355.00) points

 0
 562.7403 153.2529 655.856 355.0036

 74
 SubDoc
 74

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 73
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 73 to page 73
 Mask co-ordinates: Left bottom (290.18 364.70) Right top (408.52 370.52) points

 0
 290.1829 364.7032 408.5174 370.5229

 73
 SubDoc
 73

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 72
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 73 to page 73
 Mask co-ordinates: Left bottom (524.91 524.75) Right top (602.51 634.35) points

 0
 524.912 524.7458 602.5085 634.3508

 73
 SubDoc
 73

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 72
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 73 to page 73
 Mask co-ordinates: Left bottom (553.04 168.77) Right top (655.86 307.48) points

 0
 553.0407 168.7722 655.856 307.4758

 73
 SubDoc
 73

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 72
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 72 to page 72
 Mask co-ordinates: Left bottom (543.34 122.21) Right top (674.29 352.09) points

 0
 543.3412 122.2144 674.2852 352.0938

 72
 SubDoc
 72

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 71
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 72 to page 72
 Mask co-ordinates: Left bottom (329.95 361.79) Right top (409.49 373.43) points

 0
 329.951 361.7933 409.4874 373.4328

 72
 SubDoc
 72

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 71
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 72 to page 72
 Mask co-ordinates: Left bottom (529.76 499.53) Right top (563.71 599.43) points

 0
 529.7618 499.5269 563.7103 599.4324

 72
 SubDoc
 72

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 71
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 71 to page 71
 Mask co-ordinates: Left bottom (525.88 648.90) Right top (610.27 795.36) points

 0
 525.882 648.9001 610.2681 795.3633

 71
 SubDoc
 71

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 70
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 71 to page 71
 Mask co-ordinates: Left bottom (296.00 359.85) Right top (434.71 383.13) points

 0
 296.0026 359.8534 434.7062 383.1323

 71
 SubDoc
 71

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 70
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 71 to page 71
 Mask co-ordinates: Left bottom (550.13 148.40) Right top (741.21 723.59) points

 0
 550.1309 148.4032 741.212 723.5866

 71
 SubDoc
 71

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 70
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 70 to page 70
 Mask co-ordinates: Left bottom (536.55 150.34) Right top (699.50 431.63) points

 0
 536.5515 150.3431 699.504 431.6301

 70
 SubDoc
 70

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 69
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 70 to page 70
 Mask co-ordinates: Left bottom (524.91 434.54) Right top (651.98 733.29) points

 0
 524.912 434.5399 651.9762 733.2862

 70
 SubDoc
 70

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 69
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 70 to page 70
 Mask co-ordinates: Left bottom (336.74 364.70) Right top (346.44 371.49) points

 0
 336.7407 364.7032 346.4403 371.4929

 70
 SubDoc
 70

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 69
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 69 to page 69
 Mask co-ordinates: Left bottom (329.95 363.73) Right top (406.58 370.52) points

 0
 329.951 363.7332 406.5775 370.5229

 69
 SubDoc
 69

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 68
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 69 to page 69
 Mask co-ordinates: Left bottom (518.12 511.17) Right top (591.84 575.18) points

 0
 518.1224 511.1664 591.8389 575.1835

 69
 SubDoc
 69

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 68
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 68 to page 68
 Mask co-ordinates: Left bottom (455.08 -3.88) Right top (563.71 68.87) points

 0
 455.0753 -3.8798 563.7103 68.8668

 68
 SubDoc
 68

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 67
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 68 to page 68
 Mask co-ordinates: Left bottom (567.59 165.86) Right top (713.08 831.25) points

 0
 567.5901 165.8624 713.0834 831.2516

 68
 SubDoc
 68

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 67
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 67 to page 67
 Mask co-ordinates: Left bottom (554.98 151.31) Right top (689.80 733.29) points

 0
 554.9807 151.313 689.8044 733.2862

 67
 SubDoc
 67

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 66
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 67 to page 67
 Mask co-ordinates: Left bottom (233.93 357.91) Right top (415.31 381.19) points

 0
 233.9255 357.9135 415.3071 381.1924

 67
 SubDoc
 67

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 66
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 67 to page 67
 Mask co-ordinates: Left bottom (320.25 355.00) Right top (344.50 392.83) points

 0
 320.2515 355.0036 344.5004 392.8319

 67
 SubDoc
 67

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 66
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 66 to page 66
 Mask co-ordinates: Left bottom (337.71 361.79) Right top (347.41 368.58) points

 0
 337.7107 361.7933 347.4102 368.583

 66
 SubDoc
 66

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 65
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 66 to page 66
 Mask co-ordinates: Left bottom (551.10 122.21) Right top (622.88 652.78) points

 0
 551.1008 122.2144 622.8775 652.7799

 66
 SubDoc
 66

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 65
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 65 to page 65
 Mask co-ordinates: Left bottom (513.27 538.33) Right top (574.38 557.72) points

 0
 513.2726 538.3252 574.3798 557.7243

 65
 SubDoc
 65

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 64
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 65 to page 65
 Mask co-ordinates: Left bottom (556.92 136.76) Right top (615.12 498.56) points

 0
 556.9205 136.7637 615.1179 498.557

 65
 SubDoc
 65

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 64
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 64 to page 64
 Mask co-ordinates: Left bottom (546.25 136.76) Right top (614.15 395.74) points

 0
 546.251 136.7637 614.1479 395.7418

 64
 SubDoc
 64

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 63
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 63 to page 63
 Mask co-ordinates: Left bottom (322.19 221.15) Right top (345.47 247.34) points

 0
 322.1914 221.1498 345.4703 247.3386

 63
 SubDoc
 63

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 62
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 63 to page 63
 Mask co-ordinates: Left bottom (338.68 361.79) Right top (347.41 373.43) points

 0
 338.6806 361.7933 347.4102 373.4328

 63
 SubDoc
 63

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 62
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 63 to page 63
 Mask co-ordinates: Left bottom (551.10 161.98) Right top (615.12 643.08) points

 0
 551.1008 161.9825 615.1179 643.0803

 63
 SubDoc
 63

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 62
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 62 to page 62
 Mask co-ordinates: Left bottom (375.54 366.64) Right top (416.28 385.07) points

 0
 375.5389 366.6431 416.277 385.0722

 62
 SubDoc
 62

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 61
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 62 to page 62
 Mask co-ordinates: Left bottom (323.16 361.79) Right top (353.23 381.19) points

 0
 323.1613 361.7933 353.2299 381.1924

 62
 SubDoc
 62

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 61
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 62 to page 62
 Mask co-ordinates: Left bottom (546.25 140.64) Right top (646.16 572.27) points

 0
 546.251 140.6435 646.1564 572.2736

 62
 SubDoc
 62

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 61
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 61 to page 61
 Mask co-ordinates: Left bottom (336.74 364.70) Right top (349.35 371.49) points

 0
 336.7407 364.7032 349.3501 371.4929

 61
 SubDoc
 61

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 60
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 61 to page 61
 Mask co-ordinates: Left bottom (553.04 133.85) Right top (619.97 385.07) points

 0
 553.0407 133.8538 619.9677 385.0722

 61
 SubDoc
 61

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 60
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 60 to page 60
 Mask co-ordinates: Left bottom (524.91 461.70) Right top (602.51 598.46) points

 0
 524.912 461.6987 602.5085 598.4624

 60
 SubDoc
 60

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 59
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 60 to page 60
 Mask co-ordinates: Left bottom (561.77 124.15) Right top (628.70 462.67) points

 0
 561.7703 124.1543 628.6973 462.6687

 60
 SubDoc
 60

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 59
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 59 to page 59
 Mask co-ordinates: Left bottom (250.41 555.78) Right top (285.33 577.12) points

 0
 250.4147 555.7844 285.3331 577.1234

 59
 SubDoc
 59

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 58
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 59 to page 59
 Mask co-ordinates: Left bottom (230.05 539.30) Right top (246.53 565.48) points

 0
 230.0456 539.2951 246.5349 565.4839

 59
 SubDoc
 59

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 58
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 59 to page 59
 Mask co-ordinates: Left bottom (521.03 479.16) Right top (632.58 642.11) points

 0
 521.0322 479.1579 632.5771 642.1104

 59
 SubDoc
 59

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 58
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 59 to page 59
 Mask co-ordinates: Left bottom (559.83 136.76) Right top (610.27 358.88) points

 0
 559.8304 136.7637 610.2681 358.8835

 59
 SubDoc
 59

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 58
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 58 to page 58
 Mask co-ordinates: Left bottom (549.16 96.03) Right top (695.62 365.67) points

 0
 549.1609 96.0256 695.6241 365.6731

 58
 SubDoc
 58

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 57
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 58 to page 58
 Mask co-ordinates: Left bottom (490.96 387.98) Right top (502.60 397.68) points

 0
 490.9636 387.9821 502.6031 397.6817

 58
 SubDoc
 58

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 57
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 58 to page 58
 Mask co-ordinates: Left bottom (530.73 424.84) Right top (658.77 691.58) points

 0
 530.7318 424.8404 658.7659 691.5781

 58
 SubDoc
 58

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 57
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 57 to page 57
 Mask co-ordinates: Left bottom (515.21 -3.88) Right top (744.12 266.74) points

 0
 515.2125 -3.8798 744.1219 266.7377

 57
 SubDoc
 57

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 56
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 57 to page 57
 Mask co-ordinates: Left bottom (524.91 399.62) Right top (656.83 593.61) points

 0
 524.912 399.6216 656.8259 593.6126

 57
 SubDoc
 57

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 56
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 56 to page 56
 Mask co-ordinates: Left bottom (526.85 463.64) Right top (618.03 617.86) points

 0
 526.8519 463.6386 618.0277 617.8615

 56
 SubDoc
 56

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 55
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 56 to page 56
 Mask co-ordinates: Left bottom (554.98 30.07) Right top (629.67 289.05) points

 0
 554.9807 30.0686 629.6672 289.0467

 56
 SubDoc
 56

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 55
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 55 to page 55
 Mask co-ordinates: Left bottom (520.06 22.31) Right top (769.34 405.44) points

 0
 520.0623 22.309 769.3408 405.4413

 55
 SubDoc
 55

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 54
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 55 to page 55
 Mask co-ordinates: Left bottom (522.97 509.23) Right top (651.98 593.61) points

 0
 522.9721 509.2265 651.9762 593.6126

 55
 SubDoc
 55

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 54
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 54 to page 54
 Mask co-ordinates: Left bottom (520.06 513.11) Right top (634.52 581.97) points

 0
 520.0623 513.1063 634.517 581.9731

 54
 SubDoc
 54

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 53
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 54 to page 54
 Mask co-ordinates: Left bottom (333.83 360.82) Right top (347.41 377.31) points

 0
 333.8308 360.8234 347.4102 377.3126

 54
 SubDoc
 54

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 53
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 55 to page 55
 Mask co-ordinates: Left bottom (298.91 351.12) Right top (430.83 373.43) points

 0
 298.9124 351.1238 430.8264 373.4328

 55
 SubDoc
 55

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 54
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 54 to page 54
 Mask co-ordinates: Left bottom (543.34 159.07) Right top (725.69 584.88) points

 0
 543.3412 159.0727 725.6927 584.883

 54
 SubDoc
 54

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 53
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 53 to page 53
 Mask co-ordinates: Left bottom (537.52 155.19) Right top (694.65 443.27) points

 0
 537.5214 155.1928 694.6542 443.2696

 53
 SubDoc
 53

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 52
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 52 to page 52
 Mask co-ordinates: Left bottom (557.89 165.86) Right top (658.77 268.68) points

 0
 557.8905 165.8624 658.7659 268.6776

 52
 SubDoc
 52

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 51
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 52 to page 52
 Mask co-ordinates: Left bottom (308.61 339.48) Right top (423.07 376.34) points

 0
 308.612 339.4843 423.0667 376.3427

 52
 SubDoc
 52

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 51
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 51 to page 51
 Mask co-ordinates: Left bottom (528.79 515.05) Right top (664.59 715.83) points

 0
 528.7919 515.0463 664.5856 715.827

 51
 SubDoc
 51

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 50
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 51 to page 51
 Mask co-ordinates: Left bottom (554.98 135.79) Right top (630.64 320.09) points

 0
 554.9807 135.7937 630.6371 320.0852

 51
 SubDoc
 51

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 50
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 50 to page 50
 Mask co-ordinates: Left bottom (524.91 452.97) Right top (625.79 597.49) points

 0
 524.912 452.9691 625.7874 597.4924

 50
 SubDoc
 50

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 49
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 50 to page 50
 Mask co-ordinates: Left bottom (547.22 13.58) Right top (670.41 498.56) points

 0
 547.221 13.5794 670.4053 498.557

 50
 SubDoc
 50

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 49
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 49 to page 49
 Mask co-ordinates: Left bottom (550.13 -3.88) Right top (683.98 148.40) points

 0
 550.1309 -3.8798 683.9847 148.4032

 49
 SubDoc
 49

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 48
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 49 to page 49
 Mask co-ordinates: Left bottom (553.04 166.83) Right top (630.64 303.60) points

 0
 553.0407 166.8323 630.6371 303.596

 49
 SubDoc
 49

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 48
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 49 to page 49
 Mask co-ordinates: Left bottom (516.18 507.29) Right top (641.31 642.11) points

 0
 516.1824 507.2866 641.3066 642.1104

 49
 SubDoc
 49

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 48
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 48 to page 48
 Mask co-ordinates: Left bottom (568.56 144.52) Right top (623.85 342.39) points

 0
 568.56 144.5233 623.8475 342.3942

 48
 SubDoc
 48

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 47
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 47 to page 47
 Mask co-ordinates: Left bottom (324.13 354.03) Right top (402.70 379.25) points

 0
 324.1313 354.0337 402.6977 379.2525

 47
 SubDoc
 47

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 46
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 44 to page 44
 Mask co-ordinates: Left bottom (552.07 177.50) Right top (640.34 294.87) points

 0
 552.0708 177.5018 640.3367 294.8664

 44
 SubDoc
 44

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 43
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 44 to page 44
 Mask co-ordinates: Left bottom (326.07 348.21) Right top (358.08 371.49) points

 0
 326.0712 348.2139 358.0797 371.4929

 44
 SubDoc
 44

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 43
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 42 to page 42
 Mask co-ordinates: Left bottom (568.56 173.62) Right top (603.48 283.23) points

 0
 568.56 173.622 603.4784 283.2269

 42
 SubDoc
 42

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 41
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 42 to page 42
 Mask co-ordinates: Left bottom (395.91 365.67) Right top (403.67 372.46) points

 0
 395.908 365.6731 403.6676 372.4628

 42
 SubDoc
 42

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 41
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 42 to page 42
 Mask co-ordinates: Left bottom (332.86 362.76) Right top (343.53 367.61) points

 0
 332.8609 362.7633 343.5304 367.613

 42
 SubDoc
 42

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 41
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 42 to page 42
 Mask co-ordinates: Left bottom (333.83 365.67) Right top (349.35 371.49) points

 0
 333.8308 365.6731 349.3501 371.4929

 42
 SubDoc
 42

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 41
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 42 to page 42
 Mask co-ordinates: Left bottom (519.09 517.96) Right top (569.53 632.41) points

 0
 519.0923 517.9561 569.53 632.4108

 42
 SubDoc
 42

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 41
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 41 to page 41
 Mask co-ordinates: Left bottom (526.85 514.08) Right top (560.80 569.36) points

 0
 526.8519 514.0763 560.8004 569.3638

 41
 SubDoc
 41

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 40
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 41 to page 41
 Mask co-ordinates: Left bottom (395.91 365.67) Right top (407.55 372.46) points

 0
 395.908 365.6731 407.5475 372.4628

 41
 SubDoc
 41

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 40
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 41 to page 41
 Mask co-ordinates: Left bottom (338.68 363.73) Right top (348.38 370.52) points

 0
 338.6806 363.7332 348.3802 370.5229

 41
 SubDoc
 41

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 40
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 40 to page 40
 Mask co-ordinates: Left bottom (336.74 362.76) Right top (345.47 371.49) points

 0
 336.7407 362.7633 345.4703 371.4929

 40
 SubDoc
 40

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 39
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 40 to page 40
 Mask co-ordinates: Left bottom (528.79 534.45) Right top (569.53 549.96) points

 0
 528.7919 534.4454 569.53 549.9647

 40
 SubDoc
 40

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 39
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 39 to page 39
 Mask co-ordinates: Left bottom (566.62 174.59) Right top (646.16 326.87) points

 0
 566.6201 174.5919 646.1564 326.8749

 39
 SubDoc
 39

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 38
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 39 to page 39
 Mask co-ordinates: Left bottom (538.49 488.86) Right top (598.63 613.98) points

 0
 538.4914 488.8575 598.6287 613.9817

 39
 SubDoc
 39

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 38
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 39 to page 39
 Mask co-ordinates: Left bottom (293.09 349.18) Right top (428.89 372.46) points

 0
 293.0927 349.1839 428.8865 372.4628

 39
 SubDoc
 39

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 38
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 38 to page 38
 Mask co-ordinates: Left bottom (505.51 515.05) Right top (595.72 578.09) points

 0
 505.5129 515.0463 595.7188 578.0933

 38
 SubDoc
 38

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 37
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 38 to page 38
 Mask co-ordinates: Left bottom (336.74 362.76) Right top (351.29 367.61) points

 0
 336.7407 362.7633 351.29 367.613

 38
 SubDoc
 38

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 37
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 38 to page 38
 Mask co-ordinates: Left bottom (391.06 364.70) Right top (407.55 372.46) points

 0
 391.0582 364.7032 407.5475 372.4628

 38
 SubDoc
 38

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 37
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 37 to page 37
 Mask co-ordinates: Left bottom (518.12 524.75) Right top (583.11 552.87) points

 0
 518.1224 524.7458 583.1094 552.8745

 37
 SubDoc
 37

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 36
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 37 to page 37
 Mask co-ordinates: Left bottom (337.71 365.67) Right top (350.32 368.58) points

 0
 337.7107 365.6731 350.3201 368.583

 37
 SubDoc
 37

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 36
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 36 to page 36
 Mask co-ordinates: Left bottom (537.52 501.47) Right top (586.02 581.00) points

 0
 537.5214 501.4669 586.0192 581.0032

 36
 SubDoc
 36

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 35
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 36 to page 36
 Mask co-ordinates: Left bottom (395.91 354.03) Right top (402.70 393.80) points

 0
 395.908 354.0337 402.6977 393.8018

 36
 SubDoc
 36

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 35
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 36 to page 36
 Mask co-ordinates: Left bottom (330.92 331.72) Right top (347.41 394.77) points

 0
 330.921 331.7247 347.4102 394.7718

 36
 SubDoc
 36

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 35
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 35 to page 35
 Mask co-ordinates: Left bottom (164.09 381.19) Right top (241.69 415.14) points

 0
 164.0887 381.1924 241.6851 415.1408

 35
 SubDoc
 35

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 34
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 35 to page 35
 Mask co-ordinates: Left bottom (338.68 362.76) Right top (344.50 368.58) points

 0
 338.6806 362.7633 344.5004 368.583

 35
 SubDoc
 35

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 34
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 35 to page 35
 Mask co-ordinates: Left bottom (539.46 519.90) Right top (565.65 611.07) points

 0
 539.4614 519.896 565.6501 611.0718

 35
 SubDoc
 35

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 34
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 34 to page 34
 Mask co-ordinates: Left bottom (536.55 513.11) Right top (578.26 613.01) points

 0
 536.5515 513.1063 578.2596 613.0117

 34
 SubDoc
 34

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 33
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 34 to page 34
 Mask co-ordinates: Left bottom (393.00 364.70) Right top (406.58 371.49) points

 0
 392.9981 364.7032 406.5775 371.4929

 34
 SubDoc
 34

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 33
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 34 to page 34
 Mask co-ordinates: Left bottom (334.80 362.76) Right top (348.38 369.55) points

 0
 334.8008 362.7633 348.3802 369.5529

 34
 SubDoc
 34

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 33
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 33 to page 33
 Mask co-ordinates: Left bottom (391.06 362.76) Right top (420.16 372.46) points

 0
 391.0582 362.7633 420.1569 372.4628

 33
 SubDoc
 33

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 32
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 33 to page 33
 Mask co-ordinates: Left bottom (330.92 363.73) Right top (346.44 369.55) points

 0
 330.921 363.7332 346.4403 369.5529

 33
 SubDoc
 33

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 32
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 32 to page 32
 Mask co-ordinates: Left bottom (539.46 525.72) Right top (576.32 580.03) points

 0
 539.4614 525.7158 576.3196 580.0333

 32
 SubDoc
 32

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 31
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 32 to page 32
 Mask co-ordinates: Left bottom (374.57 363.73) Right top (411.43 390.89) points

 0
 374.569 363.7332 411.4273 390.892

 32
 SubDoc
 32

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 31
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 32 to page 32
 Mask co-ordinates: Left bottom (333.83 363.73) Right top (353.23 377.31) points

 0
 333.8308 363.7332 353.2299 377.3126

 32
 SubDoc
 32

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 31
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 31 to page 31
 Mask co-ordinates: Left bottom (325.10 337.54) Right top (354.20 417.08) points

 0
 325.1013 337.5444 354.1999 417.0807

 31
 SubDoc
 31

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 30
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 31 to page 31
 Mask co-ordinates: Left bottom (530.73 166.83) Right top (658.77 313.30) points

 0
 530.7318 166.8323 658.7659 313.2956

 31
 SubDoc
 31

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 30
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 30 to page 30
 Mask co-ordinates: Left bottom (334.80 365.67) Right top (345.47 370.52) points

 0
 334.8008 365.6731 345.4703 370.5229

 30
 SubDoc
 30

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 29
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 30 to page 30
 Mask co-ordinates: Left bottom (342.56 361.79) Right top (345.47 371.49) points

 0
 342.5605 361.7933 345.4703 371.4929

 30
 SubDoc
 30

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 29
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 29 to page 29
 Mask co-ordinates: Left bottom (488.05 535.42) Right top (582.14 559.66) points

 0
 488.0537 535.4153 582.1394 559.6642

 29
 SubDoc
 29

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 28
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 27 to page 27
 Mask co-ordinates: Left bottom (384.27 354.03) Right top (425.98 382.16) points

 0
 384.2685 354.0337 425.9766 382.1624

 27
 SubDoc
 27

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 26
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 27 to page 27
 Mask co-ordinates: Left bottom (333.83 355.97) Right top (368.75 366.64) points

 0
 333.8308 355.9736 368.7492 366.6431

 27
 SubDoc
 27

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 26
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 26 to page 26
 Mask co-ordinates: Left bottom (378.45 363.73) Right top (411.43 377.31) points

 0
 378.4488 363.7332 411.4273 377.3126

 26
 SubDoc
 26

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 25
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 26 to page 26
 Mask co-ordinates: Left bottom (325.10 363.73) Right top (354.20 375.37) points

 0
 325.1013 363.7332 354.1999 375.3727

 26
 SubDoc
 26

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 25
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 25 to page 25
 Mask co-ordinates: Left bottom (280.48 353.06) Right top (423.07 371.49) points

 0
 280.4833 353.0637 423.0667 371.4929

 25
 SubDoc
 25

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 24
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 24 to page 24
 Mask co-ordinates: Left bottom (332.86 363.73) Right top (344.50 373.43) points

 0
 332.8609 363.7332 344.5004 373.4328

 24
 SubDoc
 24

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 23
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 23 to page 23
 Mask co-ordinates: Left bottom (335.77 364.70) Right top (349.35 371.49) points

 0
 335.7708 364.7032 349.3501 371.4929

 23
 SubDoc
 23

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 22
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 22 to page 22
 Mask co-ordinates: Left bottom (301.82 339.48) Right top (420.16 374.40) points

 0
 301.8223 339.4843 420.1569 374.4027

 22
 SubDoc
 22

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 21
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 21 to page 21
 Mask co-ordinates: Left bottom (542.37 379.25) Right top (601.54 478.19) points

 0
 542.3712 379.2525 601.5385 478.188

 21
 SubDoc
 21

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 20
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 21 to page 21
 Mask co-ordinates: Left bottom (383.30 367.61) Right top (426.95 381.19) points

 0
 383.2986 367.613 426.9466 381.1924

 21
 SubDoc
 21

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 20
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 21 to page 21
 Mask co-ordinates: Left bottom (302.79 347.24) Right top (379.42 384.10) points

 0
 302.7923 347.244 379.4187 384.1023

 21
 SubDoc
 21

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 20
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 20 to page 20
 Mask co-ordinates: Left bottom (398.82 365.67) Right top (413.37 380.22) points

 0
 398.8178 365.6731 413.3672 380.2225

 20
 SubDoc
 20

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 19
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 20 to page 20
 Mask co-ordinates: Left bottom (340.62 362.76) Right top (345.47 375.37) points

 0
 340.6205 362.7633 345.4703 375.3727

 20
 SubDoc
 20

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 19
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 19 to page 19
 Mask co-ordinates: Left bottom (510.36 296.81) Right top (611.24 477.22) points

 0
 510.3627 296.8063 611.238 477.218

 19
 SubDoc
 19

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 18
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 19 to page 19
 Mask co-ordinates: Left bottom (338.68 363.73) Right top (346.44 369.55) points

 0
 338.6806 363.7332 346.4403 369.5529

 19
 SubDoc
 19

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 18
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 18 to page 18
 Mask co-ordinates: Left bottom (336.74 362.76) Right top (344.50 368.58) points

 0
 336.7407 362.7633 344.5004 368.583

 18
 SubDoc
 18

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 17
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 17 to page 17
 Mask co-ordinates: Left bottom (388.15 219.21) Right top (399.79 226.00) points

 0
 388.1483 219.2099 399.7878 225.9996

 17
 SubDoc
 17

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 16
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 17 to page 17
 Mask co-ordinates: Left bottom (168.94 129.00) Right top (221.32 183.32) points

 0
 168.9384 129.004 221.316 183.3215

 17
 SubDoc
 17

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 16
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 17 to page 17
 Mask co-ordinates: Left bottom (336.74 362.76) Right top (346.44 368.58) points

 0
 336.7407 362.7633 346.4403 368.583

 17
 SubDoc
 17

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 16
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 16 to page 16
 Mask co-ordinates: Left bottom (186.40 333.66) Right top (241.69 368.58) points

 0
 186.3976 333.6646 241.6851 368.583

 16
 SubDoc
 16

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 15
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 16 to page 16
 Mask co-ordinates: Left bottom (336.74 348.21) Right top (357.11 372.46) points

 0
 336.7407 348.2139 357.1098 372.4628

 16
 SubDoc
 16

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 15
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 15 to page 15
 Mask co-ordinates: Left bottom (338.68 364.70) Right top (346.44 370.52) points

 0
 338.6806 364.7032 346.4403 370.5229

 15
 SubDoc
 15

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 14
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 13 to page 13
 Mask co-ordinates: Left bottom (545.28 533.48) Right top (586.99 645.99) points

 0
 545.2811 533.4754 586.9892 645.9902

 13
 SubDoc
 13

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 12
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 13 to page 13
 Mask co-ordinates: Left bottom (335.77 363.73) Right top (347.41 369.55) points

 0
 335.7708 363.7332 347.4102 369.5529

 13
 SubDoc
 13

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 12
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 12 to page 12
 Mask co-ordinates: Left bottom (337.71 361.79) Right top (348.38 369.55) points

 0
 337.7107 361.7933 348.3802 369.5529

 12
 SubDoc
 12

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 11
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 11 to page 11
 Mask co-ordinates: Left bottom (337.71 361.79) Right top (347.41 370.52) points

 0
 337.7107 361.7933 347.4102 370.5229

 11
 SubDoc
 11

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 10
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 10 to page 10
 Mask co-ordinates: Left bottom (371.66 321.06) Right top (417.25 394.77) points

 0
 371.6591 321.0552 417.247 394.7718

 10
 SubDoc
 10

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 10 to page 10
 Mask co-ordinates: Left bottom (331.89 321.06) Right top (386.21 390.89) points

 0
 331.8909 321.0552 386.2084 390.892

 10
 SubDoc
 10

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 8 to page 8
 Mask co-ordinates: Left bottom (371.66 360.82) Right top (410.46 375.37) points

 0
 371.6591 360.8234 410.4573 375.3727

 8
 SubDoc
 8

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 8 to page 8
 Mask co-ordinates: Left bottom (306.67 356.94) Right top (359.05 384.10) points

 0
 306.6721 356.9435 359.0497 384.1023

 8
 SubDoc
 8

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 7 to page 7
 Mask co-ordinates: Left bottom (394.94 727.47) Right top (420.16 741.05) points

 0
 394.938 727.4664 420.1569 741.0458

 7
 SubDoc
 7

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 6
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 6 to page 6
 Mask co-ordinates: Left bottom (472.53 233.76) Right top (849.85 845.80) points

 0
 472.5345 233.7592 849.847 845.801

 6
 SubDoc
 6

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 6 to page 6
 Mask co-ordinates: Left bottom (303.76 -3.88) Right top (656.83 377.31) points

 0
 303.7622 -3.8798 656.8259 377.3126

 6
 SubDoc
 6

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 5 to page 5
 Mask co-ordinates: Left bottom (333.83 357.91) Right top (351.29 369.55) points

 0
 333.8308 357.9135 351.29 369.5529

 5
 SubDoc
 5

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 4 to page 4
 Mask co-ordinates: Left bottom (328.98 360.82) Right top (350.32 371.49) points

 0
 328.9811 360.8234 350.3201 371.4929

 4
 SubDoc
 4

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 3 to page 3
 Mask co-ordinates: Left bottom (337.71 363.73) Right top (350.32 370.52) points

 0
 337.7107 363.7332 350.3201 370.5229

 3
 SubDoc
 3

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 2
 Mask co-ordinates: Left bottom (242.66 641.14) Right top (446.35 758.51) points

 0
 242.655 641.1404 446.3457 758.505

 2
 SubDoc
 2

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 1
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (392.03 366.64) Right top (433.74 380.22) points

 0
 392.0282 366.6431 433.7362 380.2225

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (330.92 363.73) Right top (349.35 381.19) points

 0
 330.921 363.7332 349.3501 381.1924

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (477.38 273.53) Right top (691.74 516.02) points

 0
 477.3842 273.5274 691.7443 516.0162

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 144
 145
 0
 1

 1

 HistoryList_V1
 qi2base

