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Abstract 

Using 2438 estimates collected over 32 studies, I conduct a meta analysis to investigate the 

relationship between robotics and employment. Using both fixed and random effects 

weighted least squares regressions, I find little evidence of a clear relationship between 

changes in robot use and employment, nor do I find evidence of publication bias within this 

literature. Using Bayesian model averaging and backwards stepwise regressions I explore 

factors that may influence the size of the robot-employment relationship. I find evidence that 

variables for the level at which analysis is conducted, as well as source of data used are very 

likely to feature in the true robot-employment specification, but none of these meet the 

minimum threshold for being categorized even as a small effect size. I also find evidence that 

controls for population size, gender shares and ethnicity shares are likely to be present in the 

true robot-employment specification, and are each found to have a small effect size. 

Specifications controlling for population size or ethnicity shares tend to have a smaller 

estimated effect of the impact of robots on employment, while specifications controlling for 

age shares tend to give larger estimates of the robot-employment effect. Finally, I find that 

there exists a pronounced interest within the literature for analysis of already developed 

nations, but only few papers on developing countries, which limits the generalisability of our 

findings. One further needs to recognise that there exists some significant flaws in the IFR 

dataset, which is the data source for the majority of analyses estimating the robot-

employment effect size. Such flaws threaten the validity of the results of both empirical 

studies using IFR data and dependent studies, such as this meta analysis. 
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I 

Introduction 

The potential for disruption in global labour markets due to the growing level of automation 

into the workplace has been an area of major concern for some time, simultaneously at the 

individual, firm, industry, and national level. As early as 1930, John Maynard Keynes (1930) 

references the growth of “Technological unemployment” rising from humanity’s “discovery of 

means of economising the use of labour outrunning the pace at which we can find new uses 

for labour”. Similarly, Baldwin and Shultz (1955) express concerns regarding the uncertain 

effect upon employment associated with growing industrialisation and automation. More 

recently, this topic has gained much media attention. In an article from the BBC, Cellan-Jones 

(2019) suggests “20 million manufacturing jobs around the world could be replaced by robots 

by 2030”, while in an article written for Forbes, Kelly (2020) argues that robots will cause an 

additional unemployment shock, on top of the shock induced by the COVID-19 pandemic. 

 

Over time, many economists have attempted to estimate the effect of automation on 

employment. Terzidis et al. (2019) reviews this literature, analysing 77 studies with empirical 

estimates of the relationship between automation and employment, concluding that 

automation is generally beneficial at the firm and industry level in terms of employment. 

However, the study also finds that automation increases labour displacement at the 

occupation level, and is more likely to displace low-skilled labour.  
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In the related literature, ‘automation’ has generally been the focus of analysis for those 

analysing the influence of technological development upon employment. However, more 

recently, there is a growing interest in understanding the effect of robotics. In a seminal paper 

originally written in 2017, Acemoglu and Restrepo (2020) focus on the effect of industrial 

robots upon local US labour markets. They find robots have a generally negative effect on 

employment, suggesting that 'this time' it might be different: while earlier automation was 

not bad for overall employment, the latest wave of automation through the use of industrial 

robots, could be. The academic response to this paper has been substantial with a multitude 

of related papers being released in subsequence, each estimating this niche relationship, 

often citing the Acemoglu and Restrepo (2020) estimation method as the foundation for their 

respective statistical inference. 

 

In this thesis, I analyse this recent strand of the literature using a meta analysis. Although 

having a wide range of empirical research is beneficial for understanding an effect of interest 

in a given research area, each paper individually examines only a specific form of a 

relationship of interest. Understanding both the ‘average’ strength of a relationship as well 

what determines the strength of this relationship, is the purpose of meta analysis. Through 

the process of meta analysis, I seek to collate all quantitative information regarding a 

relationship of interest, throughout the entire body of research. Following this, I 

systematically analyse the collected information in order to uncover an underlying broad 

effect of interest, to find the variables which influence this relationship, and to assess the 

degree of publication bias within the literature.  
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This paper conducts a meta analysis of the recent literature attempting to understand the 

effect of robotics (or ‘robots’) upon employment.  Overall, I find no evidence that there is a 

meaningful empirical relationship between the use of robots and employment. Similarly, I 

find no evidence of publication bias within the literature. Using Bayesian Model Averaging 

and backwards stepwise regressions, I find that estimates controlling for population size or 

ethnicity shares tend to find more negative estimates of the size of the impact of robots on 

employment; while estimates controlling for age shares tend to find more a positive robot-

employment relationship. But even those effect sizes are small, according to the partial 

correlation coefficient effect size guidelines outlined in Doucouliagos (2011). I further find 

that a control variable for the data source on which analysis is based (International Federation 

of Robotics (IFR) data/ non-IFR) is likely to be present in the true robot-employment 

specification, but its effect does not meet the minimum threshold for a small effect, according 

to Doucouliagos (2011). Finally, I also find that controls for the level of analysis (for example, 

regional versus industry level) undertaken are likely to feature in the true robot-employment 

specification. But while there appears some variation in the estimated effect sizes of different 

levels of analysis, none of these items meet the Doucouliagos (2011) threshold for a small 

effect. 

 

Finally, I also recognise two potentially disruptive issues which may threaten the validity of 

our results. First, there exists much criticism of the accuracy of the IFR dataset, the data 

source of 84.5% of the estimates collected for this study. There exists a series of issues related 

to this dataset which may damage the results of studies in many different areas and contexts. 

Secondly, I find a strong tendency of literature within this field to focus their analysis on 
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labour markets within developed nations, making global generalisations of our findings 

potentially dubious. 

 

The remainder of the paper is structured as follows. The methodology through which relevant 

papers are collated, alongside a literature review is conducted in section II. In section III, I 

describe the techniques to be used in our analysis. Section IV is used to describe the coded 

data and conduct analyses. Conclusions of analysis are given in section V. 

 

II 

Literature Review  

 

This literature review begins in section II.1 by describing the method by which I collected the 

relevant papers to include in our study. PRISMA (2021) provides guidelines which I use to 

narrow down broad literature searches into a collection of exclusively directly relevant studies 

to the meta analysis at hand. I then explore some significant findings in the more broad 

literature which analyses the influence of automation upon employment (section II.2). 

Following this, in section II.3, I recognise the literature analysing some of the alternative 

effects beyond employment that both automation and robots have been tested to have. In 

section II.4, I focus our attention on the literature surrounding the effect of robots on 

employment. I split this section into 3 parts, first giving an overview of the findings and 

connections between recent publications within this field. I then comment on the observed 

sensitivity of estimated effect sizes between related literature, and finally, I recognise and 
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bring to light some of the issues noticed throughout the literature related to a major data 

source used by the majority of our collected papers. Lastly, in section II.5 I first recognise some 

of the foundational literature in the field of meta analysis, alongside some meta analysis 

literature related to this study, before describing the basic technique used to make effect size 

estimates between studies comparable. 

 

II.1- Literature collection 

 

Information for this meta analysis was collated through a series of labour intensive steps, 

directed by the PRISMA methodology for data collection. The first step being the 

identification of useful databases through which to collect literature. I selected four separate 

search engines to ensure searches resulted in a broad selection of potentially relevant papers. 

These search engines are Google Scholar, IDEAs, EBSCO, and SCOPUS, which are all widely 

used in economic research. Next, it is necessary to select our keywords for searching on these 

databases. I found the most effective search terms in retrieving relevant-appearing results to 

be “employment” “jobs” and “robots”. All our searches use “robots” and one of “jobs” and 

“employment” as search terms. From these searches, I collected 521 potentially relevant 

papers. 

 

To create a bibliographic database with information about relevant papers, I use web-scraping 

programs, alongside the integrated exporting functions of some of these literature databases. 

I exported our search results into separate excel files for convenience and ensuring 
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consistency over time. However, prior to eliminating papers based on irrelevant content (i.e. 

papers which do not, or appear extremely unlikely to, provide some empirical estimate of the 

effect of robots upon employment), I ensured that each of our files contained only unique 

papers (to avoid the issue of including the same paper’s regressions multiple times in our 

meta analysis). This required searching within and across excel files for keywords (e.g. author 

name, title, abstract segment) unique to each individual paper. In the case where a paper 

does appear multiple times, excess copies (i.e. not the first appearance of a paper) were 

removed from our file and are not examined further. This process reduced the bank of search 

results from 521 papers to 386. 

 

Following this, each of the abstracts of these 386 unique papers were read separately by 2 

reviewers. If the abstract suggested that the paper would present content on the relationship 

between the use of robotics and its effect on labour employment, I would approve and 

download the paper for further examination. In the case where the paper is entirely irrelevant 

to the topic at hand or the abstract suggests it is very unlikely to examine the particular 

relationship between robots and employment, I reject the paper for further analysis. This 

process reduced the result bank from 386 papers to 112. I then accessed the full copies of 

each of the remaining studies to determine whether the paper reports any estimates of the 

effect of robots upon employment. In the case where a paper does include such a regression, 

I include the paper in our final list to be coded for our meta analysis (further detail of coding 

process given in section IV.1). Papers that do not include such a regression are rejected and 

are not used in any quantitative analysis. This process reduced the bank of papers from 112 

to 32. Each of the remaining 32 papers will be included in all further quantitative analysis 
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made on this thesis. I have compiled these studies into a separate file which includes PDFs of 

each of these papers.  

 

The PRISMA procedure is summarised in Figure 1 below

 

 

 

 

Figure 1 
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II.2 

Broad Automation and Employment. 

 

The area of interest of this study is part of a broader field of research, that of the effect of 

automation upon the labour market.  

 

Two key forces dictate the size of the effect of automation upon employment; namely the 

substitution effect, and the income effect. The purpose of introducing robots into the 

workplace is to improve upon the efficiency of human labour, substituting generally 

expensive human labour for comparatively cheap mechanical labour, thereby reducing the 

demand for human labour. Increases in production efficiency typically translate into a 

reduction in production costs, which may incentivise a producer or service provider to 

subsequently lower prices in order to increase competitiveness. Where goods and services 

follow normal demand behaviour, price decreases will stimulate additional demand, which a 

profit maximising good/service provider meets most likely through the acquisition of 

additional human and mechanical labour. In this general case, automation thus generates two 

opposing effects: while the substitution effect will have a negative influence on employment, 

the income effect will have a positive effect on employment. I cannot determine the dominant 

effect without an empirical investigation. 

  

The following section seeks to identify a selection of relevant contributions within this 

broader field, to provide a wider context to the meta analysis conducted later in this paper. 
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A number of studies have made attempts to establish the risk to various occupations of 

becoming automated, without estimating an actual automation-employment effect.  Frey 

and Osborne (2017) conduct a study examining the susceptibility of 702 occupations to 

computerisation. Of these occupations, the paper finds that approximately 47% of the US 

labour force is at risk of computerisation (expected within 10-20 years). More specifically, the 

study finds that the majority of employment in transportation, logistics, office administration 

support, and service occupations are highly susceptible to computerisation. Arntz et al. (2016) 

and Pouliakas (2018) both perform similar studies, analysing the risk of automation associated 

with jobs in countries in the OECD and EU respectively. In Roux (2018), a model is formed for 

predicting the impact adopting “increasingly advanced computing technologies” may have on 

the labour market in South Africa. The paper analyses the correlation between a ‘risk of 

computerisation’ index and the rates of employment change across various industries, 

ethnicities, and labour types (skill levels), to find the proportion of South African workers 

whose jobs are in imminent threat of computerisation. The paper finds that after analysing 

285 occupations, 35% of South African labour as of 2014 has the potential to be computerised 

in the near future. Additionally, about 27% of the working South African population was 

deemed to be in occupations at very high risk of computerisation within the near future.   

 

Unfortunately, findings from these papers are unusable for the purpose of our meta analysis 

for two key reasons. The first being that the papers fail to run a regression specifying the 

predicted effect upon employment (these papers only give the risk of computerisation), and 
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most prominently, the independent variable that is used to predict employment risk is not of 

robotics, but rather of computerisation. 

 

Another strand of the literature focuses specifically on the effect of automation on 

employment. Micco (2019), for example, conducts a study incorporating automation risk 

levels to provide causal evidence on the effect of automation on labour markets. It provides 

these estimates using an automation risk index value that is associated with each occupation 

held by an individual worker at the time of the study. The paper finds that employment within 

jobs deemed to be at risk of automation has declined by 2.0%-2.5% greater than employment 

in jobs deemed not at risk. Additionally, the paper finds that industries which contained a high 

share of occupations at risk of automatisation experienced relatively low employment growth 

during the period from 2002-2016. Additional examples exploring the effect of automation at 

the occupation level include Leotief and Duchin (1984); Fuei (2017); and Bessen (2019). 

 

The literature on the employment effect of automation is a broad and varied range of niche 

studies, making it difficult for interested readers to interpret any general trends. Recognising 

this, Terzidis et al. (2019) conducts a meta-analysis of their own, aggregating and 

subsequently analysing the estimates generated for the effect of automation upon 

employment (and wages), across the entire branch of literature. The paper collects 77 studies, 

and 1158 estimates. The paper makes commentary of the automation effect on a multitude 

of employment forms and geographical areas. The paper finds a positive automation-

employment relationship at the firm and industry levels. However, the study additionally finds 

a positive automation-labour displacement relationship at the occupation level. Terzidis et al. 
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(2019) also highlights the degree of heterogeneity in the automation effect that exists 

between different areas (those papers conducted using European data were more likely to 

find a positive employment effect relative to their American counterparts); skill levels (finding 

the effect of technology upon employment for ‘low-skilled’ labour to be predominantly 

negative, while this effect is reversed for high skilled labour); and with the use of different 

proxies for automation (finding that ‘Research and Development investment’ and ‘Factor 

based Technical Change’ tended to have significantly positive estimated effects upon 

employment). 

 

II.3 

Automation and Alternative Effects 

 

When considering the effect of automation on labour markets, researchers are often 

interested in more than just the effect on employment. Issues such as the effect upon wages 

are also of interest. Micco (2019) provides an example of such a paper. The paper finds that 

at the occupation level, the risk of automation of a given job is correlated with a reduction in 

wages. Further, Acemoglu and Restrepo (2020) finds a reduction of wages of 0.77% for each 

additional robot per 1000 workers at the commuting zone level in the USA. Similarly, 

Stemmler (2019) makes predictions of the effect of robots/automation upon both wages and 

national exports in Brazil. The paper finds that wage inequalities which exist between high 

skill and low skill labourers in Brazil are exacerbated as a cause of increases in domestic 

automation use, suggesting that automation may lessen the bargaining power of low skilled 
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labour, while increasing the demand for highly skilled individuals who can operate 

automation machinery. 

 

Some papers focus on the indirect effects of automation. Anelli et al. (2019) explores the 

effect of automation on voting behaviour in 14 western European countries; the motivation 

behind this being that the introduction of automation in a given region or occupation is likely 

to have some effect on its labour market, thereby inducing some psychological effect on 

affected individual which may alter voting behaviour. The paper finds that greater exposure 

to automation results in “poorer perceived economic conditions and well-being, lower 

satisfaction with the government and democracy, and a reduction in perceived political self-

efficacy”, which thereby leads to a greater support of ‘radical-right’ and nationalist parties. 

Im et al. (2019) also makes commentary on the voting effects of automation, focussing on the 

effect within western European nations. As opposed to automation, the paper uses ‘robot 

adoption’ as its primary explanatory variable. Similar to the findings of Anelli et al. (2019), Im 

et al. (2019) finds that greater regional exposure to robotics causes an increase in support for 

nationalist and radical-right parties.  

 

It is evident from the literature that in many cases, the scope of interest extends past that 

which this paper seeks to analyse. For the purpose of conciseness and to provide a clear 

direction of our research, this paper does not make further commentary on the matter of 

wages or these alternative automation effects.  
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II.4 

Robots and employment 

II.4.A 

Robot-Employment literature overview  

 

I now turn to the most directly relevant literature to the study at hand – that which studies 

the robot-employment effect. Using the PRISMA method, I have collected 32 usable studies 

which make at least one estimate of the robot-employment effect. The depth and general 

interest of these papers vary widely within this set, yet the following section seeks to give an 

account of this set of studies, giving review of the key ideas and findings related to the robot-

employment effect throughout the literature1.   

Most studies focus on single countries like the United States, France, Spain, Germany or 

Japan, following the example of Acemoglu and Restrepo (2020), originally written in 2017, 

which analyses the effect of industrial robots upon United States employment between 1993 

and 2007. Conducting its analysis at the commuting zone level (an approximation for local 

labour markets), the paper concludes that one additional robot per thousand workers reduces 

the aggregate employment-to-population ratio by 0.2 percentage points (or rather, 3.33 

workers per robot given current robot stock) and a decline of the local labour market 

employment-to-population ratio of 0.39 percentage points. The paper has proved particularly 

 
1 Although many of these papers’ analyses are not limited to the robot-employment effect, this discussion relates 

specifically to contributions in this form. 
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influential in this field of literature, having been cited in all other items to be used in this 

analysis, although itself takes inspiration, and builds upon the model developed in Zeira 

(1998), which analyses the relationship between technological innovations and various 

economic growth variables. In addition, beyond simply sparking interest in quantitatively 

analysing the robot-employment effect, the model developed in Acemoglu and Restrepo 

(2020) appears to at least some degree in 24 of the 32 collected papers. Using the same model 

developed in Acemoglu and Restrepo (2020), Sequeira, Garrido and Santos (2020) provide an 

opposing view, finding that over the period 1990 to 2007 robots can potentially have a 

positive influence on United States employment beyond a particular robot penetration 

threshold within a given industry. In other words, the paper suggests that there exists some 

non-linear (U-shaped) relationship previously undiscovered, as opposed to the linearly 

negative relationship proposed by Acemoglu and Restrepo (2020). Borjas and Freeman 

(2019), although using a different methodology, and examining the robot-employment effect 

over a different time period (2004-2016), finds a very similar general effect size estimate to 

that of Acemoglu and Restrepo (2020). Anelli, Giuntella and Stella (2019) and Micco (2019) 

provide further estimates of the robot-employment effect in the United States, each finding 

generally negative effects. 

 

Focusing on France, Aghion, Antonin, & Bunel (2019) study the influence of robots on French 

employment over the 1994-2014 period, and use the model developed in Acemoglu and 

Restrepo (2020) and Zeira (1998). Although the paper primarily seeks to uncover the effect of 

artificial intelligence, it forms employment effect estimates using a robotisation independent 

variable. The paper finds that increases in robotisation result in a decrease to employment at 
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the commuting zone level, and finds further an accentuated negative effect on non-educated 

employment. Acemoglu, Lelarge, & Restrepo (2020) focus on French manufacturing firms at 

both the market level and the firm level. The key findings of the paper are similar to Acemoglu 

and Restrepo (2020) and Aghion, Antonin, & Bunel (2019), finding generally that firms which 

adopt robots experience declines in the share of production employment. In contrast Kariel 

(2021), which also follows the Acemoglu and Restrepo (2020) model, estimates the effect of 

industrial robot adoption upon employment in the UK, and finds a generally positive robot-

employment relationship. In certain cases however, Kariel (2021) finds the effect can be 

negative, particularly in high-tech manufacturing employment. 

 

Camiña, Díaz-Chao and Torrent-Sellens (2020) form estimates of the robot-employment 

effect in Spanish manufacturing firms over the period 1991-2016. The paper finds that 

although robots have the effect of replacing human labour, this effect is overshadowed by 

the complimentary (income effect) factor of an increase in robot use, which results in an 

overall long term increase in employment. Koch, Manuylov and Smolka (2019) conducts a 

very similar study, examining the robot-employment effect in Spanish manufacturing firms 

over the period 1990-2016. As might be expected, it finds similar results to that of Camiña, 

Díaz-Chao and Torrent-Sellens (2020), estimating a net positive effect of robots upon job 

creation. 

 

This paper also codes for two separate editions of Dauth, Findeisen, Suedekum and Woessner 

(2017/2018). The paper analyses the effect of industrial robots upon German labour markets 

from 1994 to 2014 using the model developed by Acemoglu and Restrepo (2020), finding no 
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general robot-employment effect. However, when examining individual labour types, the 

study finds that there exists a negative employment effect on manufacturing employment, 

which is neutralised by employment gains in the service sector. 

 

Of particular interest to this field of study, is the influence of robots upon employment in 

Japan, given the country’s extremely high robot density (robots per worker), approximately 

10 times greater than in the United States according to Dekle (2020). Analysis within such a 

high robot usage nation may give a more reliable indication of the expected global long term 

robot-employment effect. This is the focus of Dekle (2020), who uses industry level data from 

1979-2012 to analyse the robot-employment effect in Japan. The paper also derives its model 

from that used in Acemoglu and Restrepo (2020). The robot-employment effect is analysed 

in three separate components, namely: the negative displacement effect, the positive 

productivity effect, and the positive general equilibrium effect. The general finding of Dekle 

(2020) is that, at the industry level, the positive employment effects brought upon by robots 

significantly outweigh the negative displacement effect in Japan. Like Dekle (2020), Adachi et 

al. (2020) also estimates the size of the robot-employment effect in Japanese labour markets 

at the industry level, making use of a data set covering the time period 1978-2017. Again, the 

paper bases its methodology on that designed in Acemoglu and Restrepo (2020).  As is the 

case of Dekle (2020), the paper finds that there exists a positive robot-employment 

relationship. 

 

Ni & Obashi (2021) also focuses its analysis on Japan, particularly on the effect of industrial 

robots upon Japanese manufacturing employment. As opposed to simply estimating the 
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relationship between robots and employment, Ni & Obashi (2021) breaks down the equation 

further, estimating the effect of robots upon both job creation and job destruction. The paper 

finds that robots positively affect both job creation and destruction. The effect on job 

destruction is found to dominate that of job creation, thus leading to an overall negative 

employment effect of robots upon Japanese manufacturing employment. Finally, Eggleston 

et al. (2021) provides an analysis of the robot-employment effect in Japan using 

establishment-level data. The paper has a specific focus on the robot-employment effect in 

Japanese nursing homes. Unlike most other papers included within this meta-study, this 

paper does not use a panel data set, and instead forms its estimates using a 2017 survey on 

long-term care work in Japan. As is the case of both Dekle (2020) and Adachi et al. (2020), 

Eggleston et al. (2021) finds a generally positive robot-employment relation. 

 

Each of the countries analysed so far in this review was analysed by more than one study. For 

some countries, however, only one paper is available. Giuntella and Wang (2019) investigates 

the effect of robots upon Chinese employment, also using the methodology developed in 

Acemoglu and Restrepo (2020) over the period 2000-2016. Using city-individual level data, 

the study finds a strong negative robot-employment effect, while the effect is exacerbated 

for employment of low-skilled, male, prime-age and older workers. Dotorri (2020) examines 

the effect in Italian labour markets from 1991 to 2016, finding a small positive robot-

employment effect. Dixon, Hong and Wu (2020) study the effect at the firm level in Canada, 

but do not find a uniform general relationship. The paper instead finds that robots have a 

positive effect upon employment of non-managerial employees (enhanced effect for those 
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employees with robot complimentary skills), and a negative relationship on that of managerial 

employees. 

 

An early and highly influential contribution in this field, Graetz & Michaels (2018) originally 

written in 2015, assesses the effect of industrial robots upon employment between 1993 and 

2007. Rather than focusing on a single country however, it analyses data from 17 developed 

countries. On aggregate, the paper finds no significant relationship between introduction of 

robots and employment, although their analysis does find that robot adoption corresponds 

with slight decreases in the employment share of individuals with low incomes, and slight 

increases in the employment of individuals with middle incomes.  

 

Blanas, Gancia, and Lee (2019) provides another multi-country investigation of the effect of 

industrial robots upon employment, this time in 10 high-income countries, over the period 

1982-2005, and at the country-industry level. As opposed to many studies in this field, the 

authors base their empirical model on that of Acemoglu and Autor (2011), a paper which 

develops a model for the effect of technology upon various labour market outcomes. Similar 

to the results of Graetz and Michaels (2018), the paper finds that industrial robots are 

associated with a decline in employment of low-skill workers. The paper also finds industrial 

robots are associated with declines in the employment of medium-skill workers, young people 

(age 15-29), female workers, and manufacturing sector workers. However, the study also 

finds industrial robots have a positive relationship with high-skill, male, and service industry 

employment.  
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Anton et al. (2020), Klenert, Fernandez-Macias and Anton (2020) and Chiacchio, Petropoulos 

and Pichler (2018) each examine the influence of changes in robot exposure upon European 

employment. Each paper however comes to distinctly different general conclusions. Anton et 

al. (2020) analyses the impact of European robot adoption between 1995-2015, and finds that 

the influence of robotics has changed over time. A small negative general effect is uncovered 

for the period 1995-2005, while a positive general effect is found for the 2005-2015 period. 

Over the entire period of analysis, the paper finds only a small and ambiguous effect. Klenert, 

Fernandez-Macias and Anton (2020) also studies the 1995-2015 period, assessing the effect 

of robot adoption on employment in Europe at the industry level. The paper however finds a 

positive general robot-employment effect over the entire period of analysis. The paper 

further dismisses that there exists a relatively poor effect of robots upon low-skilled 

employment as compared to the effect on general employment. Chiacchio, Petropoulos and 

Pichler (2018) again assesses robot-employment effect using data from 6 European Union 

nations which together account for 85.5% of all industrial robots in the EU. The paper finds a 

strong negative general robot-employment effect. The negative effect was found to be 

exacerbated for both young workers, and workers with ‘middle’ education.   

 

Both Compagnucci et al. (2019) and Jung and Lim (2020) also conduct multi-national analyses, 

with a scope limited primarily to developed nations. Compagnucci et al. (2019) analyses a set 

of 16 OECD nations over the period 2011-2016 at the industry level, finding an increase in 

robot use to reduce the growth rate of employment. Jung and Lim (2020) uses data from 42 

nations over the period 2001-2017, and confirms the analysis of Compagnucci et al. (2019), 
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finding high robot use to be associated with a reduction in employment growth rate. The 

analysis further finds high robot use to reduce the proportion of low-skilled labour 

employment.   

 

Carbonero, Ernst, and Weber (2020) and de Vries et al. (2020) both analyse the robot-

employment effect across both low and high income nations, to give a more globally 

generalisable estimate over the periods 2005-2015 and 2005-2014 respectively. Carbonero, 

Ernst, and Weber (2020) utilises data from 43 countries, and generalises its conclusions to a 

world-wide scale, finding a negative global robot-employment effect. The paper finds 

heterogeneity in the effect between nations, estimating a small negative employment effect 

in developed nations, in contrast to the relatively large negative effect discovered in 

developing nations. In contrast, de Vries et al. (2020) utilises data from 19 industries and 37 

countries, but does not find any significant general relationship between robot adoption and 

employment, yet it does still find some interesting niche relationships. Analytic jobs 

employment sees a positive influence from robot adoption, while routine manual jobs are 

found to experience declines in employment due to robotics. Such insights are found to be 

robust to a series of potentially disruptive control variables (i.e. the found relationships do 

not appear to suffer from omitted variable bias). 

   

Fu, Bao, Xie, & Fu (2021) extends the scope of analysis further, covering 74 nations between 

2004-2016. The scope of the paper gives useful insight into the difference in the employment 

effect of industrial robots between developed and developing nations. The paper opposes the 

findings of studies such as Acemoglu and Restrepo (2020) and Aghion, Antonin, & Bunel 
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(2019), finding that industrial robots are generally associated with significant gains in 

employment in developed nations. The paper does not find any significant general robot-

employment relation related to developing nations, although individuals with at least a 

‘middle’ level of education within such nations do benefit from increases in industrial robot 

use in terms of employment.  

 

Finally, while most papers connect domestic robot usage to domestic employment, some 

papers look at the impact of robots usage abroad on domestic employment. Faber (2020) 

extends the model presented by Acemoglu and Restrepo (2020), to estimate the influence of 

robots upon Mexican labour markets. The paper however further recognises the potential 

influence of robots employed in the United States upon local labour markets, given the 

powerful influence the demands of the United States have over Mexican (alongside many 

other nations) labour activity. Although there does not appear to be a relationship between 

changes in domestic robot use and Mexican employment, there does in fact appear to be a 

strong negative relationship between US robots and Mexican employment, presumably as 

the United States automates tasks that were previously exported from Mexico. The effect was 

found to be highly robust, confirmed by testing for pre-trends and producing estimates 

controlling for many potentially disruptive covariates. Stemmler (2019) examines the effect 

of both foreign and domestic robots upon employment in Brazilian labour markets. The paper 

finds a generally negative effect of domestic robots upon employment, meanwhile foreign 

robots are found to have some distinct effects in certain industries, particularly in the 

manufacturing sector (negative relationship) and the mining sector (positive relationship). 

Kugler, Kugler, Ripani and Rodrigo (2020) assesses specifically the effect of US robotics upon 



25 

Columbian labour markets. US robots are found to have a negative influence on employment 

in Colombian industries which have high robot use in their corresponding US industries. The 

negative effect is exacerbated for women, older workers and workers employed in small and 

medium sized enterprises. Further, the employment effect of US robots is found to be most 

pronounced within Columbian labour markets that export the most to the US, suggesting a 

replacement of Columbian export industry employment for US robots. 

 

Summarising this literature review, there is a wide range of studies that attempt to estimate 

the impact of robots on human employment using data from different countries and data at 

different levels of aggregation. Moreover, one can find studies that show positive, negative 

and null effects. The variation in study designs and outcomes calls for a meta analysis. 

 

II.4.B 

Estimate sensitivity 

 

How robust are the findings within our coded set of papers to changes in specification and 

circumstance? In the following section, I seek to recognise cases of papers coded for this 

analysis which show high within study sensitivity, and further examine the consistency in 

estimates between papers which conduct their studies in similar environments and using 

similar methodologies (i.e. between study sensitivity).  
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Faber (2020) provides an example of a paper whose’ results appear particularly sensitive to 

changes in specification, reporting a positive effect in 62 estimates of the robots-employment 

effect, and a negative effect in 203. Although the abstract of the paper claims “US robots have 

a sizeable negative impact on employment in Mexico”. The significant mixture of positive 

estimated employment effects within this study suggests that this general claim made by the 

paper is not particularly robust, even though the average effect found is indeed negative. 

Stemmler (2019), in their analysis of the automation effect in Brazilian labour markets, 

produces 234 negative estimates of the employment effect of some measure of robots, but 

also finds a positive effect in 173 estimates, however this paper does not make any clear 

statement of the general employment effect of robots in Brazil. Similar trends are noticeable 

in, but not limited to Dauth et al. (2017/2018), Giuntella and Wang (2019), and Dekle (2020).  

 

I can further assess estimate sensitivity by making comparisons within the literature between 

relatively similar studies. I should expect that the results of similar studies are not significantly 

different from each other. Five studies used within this meta analysis produce estimates of 

the effect of robots upon US employment, namely Acemoglu and Restrepo (2020), Borjas and 

Freeman (2019), Micco (2019), Sequeira, Garrido and Santos (2020)  (2020) & Anelli, Giuntella 

and Stella (2019). Partial correlation coefficient2 averages of each of these papers’ estimated 

robot-employment effects are -0.2188, -0.02026, -0.0266, -0.01762 and -0.00725 

 
2 Measure the strength and direction of a relationship, varying between [-1,1] – discussed further in section 

II.3.b 
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respectively. There are clearly some notable differences in the effect size estimates of these 

papers.  

 

Interestingly, Anelli, Giuntella and Stella (2019) produce their estimates using the same 

regional exposure to robots as used in Acemoglu and Restrepo (2020). A key difference in the 

nature of the two papers however, is the time period over which their respective analyses are 

conducted, with the latter examining the period 1993-2007, while the former focuses on the 

more modern and perhaps more relevant time period of 2005-2016. Further, Anelli, Giuntella 

and Stella (2019) provides very general analysis of the explicit relationship of interest, 

providing only 2 usable regressions, relative to the 349 different specifications tested in 

Acemoglu and Restrepo (2020). It appears as though the general relationship uncovered in 

Acemoglu and Restrepo (2020) is sensitive to these contextual and specification changes, 

given the sizable difference in average PCC estimates between the two papers (-0.2188 for 

Acemoglu and Restrepo (2020), and -0.00725 for Anelli, Giuntella and Stella (2019)) 

 

Sequeira, Garrido and Santos (2020) frames itself as a “replication exercise” of Acemoglu and 

Restrepo (2020), using its own model to determine whether the results found in the latter are 

heavily dependent on its own specifications. For these reasons, comparisons of these two 

papers are particularly useful in assessing the fragility of the results found in Acemoglu and 

Restrepo (2020). A key conclusion of this paper is that the estimates of Acemoglu and 

Restrepo (2020) are not robust to the introduction of a squared robot term as an explanatory 

variable. Sequeira, Garrido and Santos (2020) claims there is “compelling evidence” of a ‘U’ 

shaped robot-employment relationship (i.e. marginal increases in robotization cause a 
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slowing of the rate of employment decreases due to robots prior to the bottom of the ‘U’, 

and increase the rate of employment increase due to robots beyond this point), suggesting 

the findings in Acemoglu and Restrepo (2020) suffer from some degree of functional form/ 

omitted variable bias. Therefore, the general conclusions of Acemoglu and Restrepo (2020) 

are to at least some degree contingent on the assumption of the shape of the robot-

employment relationship. This claim is backed by the sizable difference in our average PCC 

estimates of Acemoglu and Restrepo (2020) and Sequeira, Garrido and Santos (2020), which 

are -0.2188 and -0.01762 respectively. 

 

Micco (2019) utilises the same robot measure as used in Acemoglu and Restrepo (2020) to 

analyse US employment, using a broad proxy for sector-level robot penetration, instrumented 

using average robot penetration in 15 EU nations, but analyses a more recent time period 

(2004-2016, as compared to 1993-2007). Like Anelli, Giuntella and Stella (2019), the scope of 

the relevant analysis in Micco (2019) is limited, providing only three usable regression items. 

I find again substantial differences in the average PCC estimates of these two papers, -0.2188 

for Acemoglu and Restrepo (2020) and -0.0266 for Micco (2019), once again suggesting the 

results of Acemoglu and Restrepo (2020) are quite sensitive to changes in specifications and 

contexts.  

 

Borjas and Freeman (2019) provide one final analysis of the robot-employment effect specific 

to the United States, examining the robot-employment effect over a longer time period, and 

using a different methodology from that of Acemoglu and Restrepo (2020). Once again, I find 

substantial differences in average estimated PCCs (-0.2188 for Acemolgu and Restrepo (2020), 
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and -0.02026 for Borjas and Freeman)), highlighting the potential sensitivity of empirical 

estimates to changes in specification and context, even when studies are attempting to 

uncover the same general relationship.  

It is clear that estimate sensitivities exist both within and between studies, each estimate 

frames the problem in a different way, and hence finds different effect sizes. Through a meta 

analysis, I can discover, and estimate the size of the factors that might explain these 

differences in estimated outcomes. In the next section, I provide more detail on meta analysis 

itself. 

 

II.4.C 

IFR dataset  

 

The papers used in this meta analysis make frequent use of the International federation of 

Robotics (IFR) dataset (25 of 32 papers). The dataset seeks to provide a global overview on 

both industrial3 and service4 robot use at the country, application, and industry level. Given 

the large size of this dataset, and its potential to be applied directly to empirical problems 

related to robot use, the IFR dataset is evidently popular among researchers in related fields. 

Given the heavy influence of this particular dataset on the results of both our coded papers 

 
3 Industrial robot defined as automatically controlled, reprogrammable, multipurpose manipulator programmable in three 

or more axes 
4 Service robot defined as a robot that performs useful tasks for humans or equipment excluding industrial automation 

applications 
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which use the IFR dataset, and results of the following meta analysis, it is worth 

acknowledging some criticism of the quality of data provided by this dataset.   

 

Several papers used in this analysis take issue with various shortcomings of the IFR dataset. 

Acemoglu and Restrepo (2020) notes the fact that the IFR provides 19 industry classifications 

that a robot may fall into, yet “About 30% of robots are unclassified”.  To account for this 

issue, Acemoglu and Restrepo (2020) distribute unclassified robots proportional to the 

current industry-robot association percentages of already classified robots. Clearly, 

associating robots to industries in this way is not ideal, and will lead to some degree of errors-

in-variables bias. Further, Acemoglu and Restrepo (2020) note that although the IFR begins 

reporting US robot data from 1993, the dataset does not provide industry classifications until 

2004, further hindering the authors’ ability to provide detailed industry-specific analysis. 

Further, Acemoglu and Restrepo (2020) criticise the fact that US-specific robot stock data is 

not provided, instead aggregating to North American robot stock, potentially making their 

analysis vulnerable to heterogenous robot use practices in Canada and Mexico manipulating 

US robot-employment effect size estimates. The authors however disregard this as a reason 

for genuine concern, given the extreme dominance of robot stock held in the US relative to 

the remainder of all other North American nations. Giuntella and Wang (2019) also make note 

of the coarseness of the IFR dataset. In particular they find the sector classifications (i.e. 

employment types) used to be excessively broad, preferring a more disaggregated dataset, 

given that such limitations do not allow for examinations of the effect of robots within smaller 

sub-sectors. Additionally, Giuntella and Wang (2019) criticise the IFR dataset for not providing 

within-country robot distributions. Instead, the dataset provides robot stock for each given 
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nation (or set of nations), thereby requiring within-country analyses to be dependent on some 

distribution calculation, which will be inaccurate to at least some degree. 

 

Kariel (2021) notes that their analysis is limited to only the employment effect of industrial 

robots in the UK given that within the IFR dataset, there is: “…no adequate data available on 

services robots for the UK”. Further, Ni and Obashi (2021) state that Japanese robot data 

reported before the year 2001 appears to have been “substantially manipulated” in order to 

obtain reported figures, additionally mentioning that the IFR offers no explanation as to the 

reason for this apparent manipulation. Dekle (2020) addresses an additional issue of using IFR 

data to address Japan-specific issues; noting that the definition of a robot used by the IFR 

does not align with the much broader “Japanese definition” of a robot. For this reason, 

Japanese IFR data will generally report a relatively low robot stock, compared to what would 

be reported under a hypothetical dataset using a Japanese robot definition. This issue is likely 

to result in Japanese robot-employment effect estimates showing a more dramatic response 

to robots relative to if a Japanese robot definition dataset was used. Borjas and Freeman 

(2019) recognise that analysis of the effect of different robot types on employment is not 

possible given the data is aggregated into a single robot stock measure. Hence, any analysis 

conducted using the IFR dataset may only make estimates of the effect of robots in general, 

potentially concealing some interesting individual robot type effects. 

 

Finally, Klump et al. (2021) specifically sets out to examine the applications and limitations of 

the IFR dataset. The paper criticises the fact that the useful life/depreciation timeline of 12 

years for robot stock used by the IFR is not in line with standard economic literature, a notion 
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which the IFR itself recognises needs “further investigation”. The paper suggests a mean 

global robot stock depreciation rate of about 7% annually. The paper also points out that the 

dataset provides no way of measuring the quality or usefulness of any robot stock, in other 

words, every robot unit has an identical weight, irrespective of quality or usefulness of the 

unit. This omission means that analysis controlling for the technological progress or value of 

robots is not possible. Further, the dataset does not account for robots that are not sold on 

the open market. The paper notes the case of Amazon Robotics, who do not actually sell any 

robots, but rather supplies warehouse robotics (200,000+ service robots) exclusively to 

Amazon warehouses. Such omissions may lead to significant errors in robot-employment 

effect estimates, exacerbating the effect size of robots which are accounted for.  

 

The paper points to even more issues. First, prior to 2001, Japanese industrial robot stock was 

overstated, due to the inclusion of ‘dedicated industrial robot’ stock on top of multipurpose 

industrial robot stock. Secondly, there exists methodology deviations in both Japanese and 

Russian data from the standard IFR robot stock calculations. Klump et al. (2021) therefore 

notes that data from both these countries is “not consistent over time” and “difficult to use 

in econometric analyses” due to data inconsistencies relative to other countries. Further 

inconsistencies are also present in the datasets for: Austria, Taiwan, the Republic of Korea, 

and Australia, but are able to be corrected and included in econometric analyses. 

 

Finally, Klump et al. (2021) makes a comparison between the IFR dataset and the Comtrade 

dataset, who report annual country-specific number of robots imported net of re-exports 

figures. One would expect these values to be similar to the corresponding annual robot 
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installations values in the IFR dataset. However, the study finds that in general, Comtrade 

reports higher values than the IFR (particularly in the case of Malaysia, where Comtrade net 

imports are approximately 50 times greater than robot installations reported in the IFR 

dataset). The significant difference between the two datasets suggests that the results found 

in empirical studies can be heavily dependent on the dataset selected. Further, by reporting 

consistently lower robot values in the IFR dataset, any effect estimate found using the IFR 

dataset is likely to be exacerbated relative to what would have been found should the 

estimate have made use of the Comtrade dataset. 

   

It is clear that the data included in the IFR dataset can have substantial degrees of 

measurement error. This may undermine the validity of the results of empirical studies using 

IFR data, and the results of this meta analysis, however, I cannot comment on the extent to 

which this is true.  

 

II.5 

Meta Analysis  

II.5.A  

Overview, use, and purpose. 

 

Meta analysis, or the process of systematically and statistically taking review of quantitative 

research in a given field, is the obvious method for conducting the study at hand. Havránek 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Havr%C3%A1nek%2C+Tom%C3%A1%C5%A1
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et al. (2020) interprets meta analysis itself as “a conventional tool for research synthesis”; 

additionally stating that “Research studies published in the most eminent economics journals 

and structural models employed by central banks now routinely rely on previously published 

meta-analyses…”. Meta analysis is now common practice in economic literature as a means 

of verifying findings of individual papers, potentially dismissing outlier relationships, and 

providing approximations to the true broad effect of interest that would otherwise be hidden 

behind a series of quantitatively disconnected literature. 

 

Poot (2012) provides evidence of the dramatic upturn in the use of meta analysis in economic 

literature since 1980, citing 626 such studies that have been conducted between 1980-2012 

(With an average growth rate on number of studies conducted year on year of 18% according 

to Stanley and Doucouliagos (2011)), the majority of these being published between 2005 and 

2012. The first instance of meta analysis being used in a published journal was in Pearson 

(1904), in a paper titled “Report on certain enteric fever inoculation statistics” which 

quantitatively aggregated a number of prior conducted clinical reports related to typhoid 

inoculation. Popularity was not brought to this method of analysis in the field of Economics 

however, until the highly influential paper, Stanley and Jarrell (1989), provided a “quantitative 

methodology for reviewing the empirical economic literature.”. The paper provides a basis 

through which meta analysis within economics research could be conducted, and thereby 

increased understandability and interpretability of subsequent meta analysis research. 

Stanley (2001) builds upon Stanley and Jarrell (1989), providing a “…framework for discussing 

the strengths and weaknesses of meta-analysis”, which meta analysis researchers might refer 
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to when considering the objectivity of their study, and in making refinements to their 

respective analyses. 

 

Utilizing Stanley’s framework, many economic researchers have sought to develop meta 

regression analyses in their own given field of interest. Sverke et al. (2002) provides a meta 

analysis of the consequences of job insecurity on the individual. The paper covers 72 studies 

to uncover the response of job attitudes, organizational attitudes, health, and behavioural 

relationships related to the organisation that a given individual is employed to in the face of 

job insecurity. Sverke et al. (2002) forms a quantitative overview of all relevant estimates, 

exposing heterogeneous effects (“…consequences of insecurity are more detrimental among 

manual, as compared with nonmanual, workers.”), and in this case, allowing the authors to 

make general claims on the effects of interest (“…job insecurity has detrimental consequences 

for employees’ job attitudes, organizational attitudes, health, and, to some extent, their 

behavioural relationship with the organization”). In addition to these claims, such meta 

research allows the authors to make recommendations for subsequent empirical analyses 

(i.e. Which estimation methodologies appear to be the most effective? Which specification 

most accurately describes the relation of interest? What control variables are most 

important?) Sverke et al. (2002) gives their recommendations for both selecting variables to 

proxy for job insecurity (“scales capturing fear or worry of job loss best reflect the conceptual 

definition of job insecurity”), and for outcome variables which are most informative to the 

reader (“future studies could preferably address how job insecurity relates to job attitudes 

such as work intensity”). 
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Schaefer et al. (2016) provides an interesting parallel to the analysis at hand, in a meta 

analysis examining the contributing factors toward changes in human trust of automation. 

The paper finds human-related and automation-related factors to have moderately positive 

effects on human-automation trust development. Most significantly, it finds a moderate to 

high trust effect of both emotional and behavioural factors. Through in its overview, the paper 

identifies significant omissions in the literature (In particular, ‘appearance-based 

anthropomorphism’ and its relation to perceived age and gender of the robot or automation 

unit, and a ‘three-factor model of trust with design and training’), which may be useful in 

more accurately determining the causes human-automation trust levels. Identification of 

such omissions in the literature is a key component of the value of meta-research, allowing 

subsequent researchers to confidently develop models which minimise the chance of omitted 

variable biases. 

 

Of great significance to the analysis at hand is the aforementioned study conducted by 

Terzidis et al. (2019), which is perhaps the most directly relevant literature currently available 

to us. The study performs a meta-analysis on the effect of general automation and trade upon 

employment, using data from 77 papers, which provided 1158 estimates. The key finding of 

the study being “Automation is beneficial at the firm level, and is more likely to displace low-

skilled employment“. The paper gives commentary on the degree of heterogeneity that exists 

between and within multiple subsets of the general population (while an individual empirical 

study typically focuses its analysis on only a single subset of the population), and further 

recognises the non-uniformity of estimates at both the worker level, and firm level. 

Additionally, Terzidis et al. (2019) notes the heterogeneity that exists at the national level, 
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acknowledging that labour market reactions that occur between nations which possess 

“different labor market institutions” are unlikely to occur in a consistent 

manner.  Heterogeneity at the skill level is also recognised, bringing attention to the 

inconsistency in the reaction of labour markets with differing replaceability levels to 

automation. It is through meta analysis that such inconsistent effects are revealed, and hence 

provide the reader with a more complete view of the estimated effects of interest within a 

number of different contexts.  

 

Three key benefits of meta-analysis, beyond the discovery of some broad underlying effect 

estimate are revealed to us through this discussion. The first, being that meta analysis can 

help researchers in identifying significant omissions of variables perceived to have high 

explanatory power. This allows researchers to minimise the degree of omitted variable bias 

attached to included variables within their models. Similarly, such research can be useful in 

effectively forming specifications which are precise in explaining the outcome effect of 

interest; thereby allowing researchers to consistently develop models with variables which 

are likely to have high explanatory power. Finally, and most significantly, meta analysis allows 

for highly detailed commentary on the heterogeneity imposed by selected factors on the 

outcome variables of interest. This is essentially the primary value of meta analysis; 

researchers within the field of meta research are interested in understanding how the context 

(i.e. geographies, industries, countries, regions, individuals etc) of data affects the reaction of 

the outcome variable of interest to some general explanatory variable. 
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II.5.B 

Partial correlation coefficients  

 

A key issue of meta-analysis is combining estimated effects across studies such that they are 

comparable even when different variable measurements are used within and between 

studies (e.g. dependent variable of the ratio of employed persons to working age population 

vs a simple count of employed persons). A technique to neutralise such irregularity is 

required. Partial correlation coefficients5 (PCC) provides a measure of the strength and 

direction of the relationship between two variables and allows us to make basic comparisons 

on the size of the effect of interest. PCCs are given by the following formula: 

𝑃𝐶𝐶𝑖 =
𝑡𝑖

√𝑑𝑓𝑖 + 𝑡𝑖
2
  (6) 

and can vary between [-1,1], where PCC=1 is a perfectly positive correlation, PCC=-1 is a 

perfectly negative relationship, and PCC=0 meaning there is no discernible linear relationship. 

Interpreting PCCs requires some degree of subjectivity, but I can still follow some rules such 

that our analysis is comparable to others. Doucouliagos (2011) used over 22,000 empirical 

effect sizes in economics literature and developed their own rule of thumb. Using percentile 

distributions at 25%, 50% and 75%, the paper defines the minimum limit for small, medium 

 
5 Where ‘partial’ refers to one continuous independent variable and one continuous dependent variable, as opposed to 

many potential controls that exist in actual specifications 
6 Where ti is the t-statistic of a given estimate, and dfi is the degrees of freedom related to a given estimate  
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and large effects at respective PCC values of 0.07, 0.17 and 0.33. The remainder of this paper 

uses these figures as a rule of thumb for indicating effect strength. 

 

III 

Methods of analysis 

III.1 

Random Effects and Fixed Effect models 

  

A potential method of estimating the robot-employment effect is taking a simple average of 

every PCC value coded in our study. This is the same as using Ordinary Least Squares (OLS) to 

regress PCC values on a constant: 

𝑃𝐶𝐶𝑖
𝜀 =  𝜇 + 𝑒𝑖   𝑖 = 1,2, … , 𝑁 

Where 𝜇 is the true robot-employment effect and 𝑁 is the number of coded effect sizes. While 

the estimate will be unbiased7 and consistent8, so long as our coded set of estimates is 

representative of the true population, our estimates will however be inefficient.9  

 

An alternative to this is a Fixed effect Weighted Least Squares (WLS) estimate. Such a model 

relies on the assumption that there exists one true effect size (in this case, the robot-

employment effect) that each of the estimates collected in our dataset seeks to estimate. If 

 
7 Expected value of estimator equal to the true value of the population effect size of interest 
8 Convergence to true population effect size as sample size increases 
9 On average, the estimator does NOT approximate the true population with as much precision as some other 

estimator (i.e. does not minimize estimate variance). 
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there truly exists only one true effect, all deviations from the true effect are simply a result of 

sampling error10; if this is true, the more precisely11 an estimate is given, the more likely that 

it will closely estimate the true effect since the more precise an estimate, the lower the 

potential sampling bias (i.e. the sample is more likely to accurately represent the population). 

This is the additional (in addition to OLS) mechanism of the WLS Fixed Effect weighting 

scheme, which applies weight to estimates as a function of their respective precision (FE1 in 

table 1). If there is one true population effect, the Weighted least squares (WLS) estimate 

under fixed effect weighting will produce asymptotically unbiased, consistent and efficient 

estimates of the true population effect (Borenstein et al. (2010)). WLS is applied as follows: 

𝑃𝐶𝐶𝑖
𝜀

𝜔𝑖
=  

𝜇

𝜔𝑖
+

𝑒𝑖

𝜔𝑖
   𝑖 = 1,2, … , 𝑁 

Where 𝜔𝑖 is the weight associated with each estimate, as calculated in table 1. 

 

This study also provides random effects weightings, which follows the assumption that there 

exists a series of sub-population true effects as opposed to a single true population effect 

size. To account for this, the random effects version of WLS uses the incorporates the value 

𝑡2 into its weighting (RE1 in table 1) to represent the variance (with a standard deviation of t) 

of the distribution of estimated sub-population effect. This is simply a measure of 

heterogeneity between estimates not attributable to sampling error (Borenstien et al. 

(2010)). As t increases, and the field of literature further deviates from the ‘single true 

population effect’ the less weighting should be applied on the basis of estimate precision, and 

 
10 If a population-representative sample were collected under these circumstances, the estimate would be 

exactly the true population effect. 
11 Precision refers to the estimate distribution (i.e. inverse standard error size) 



41 

vice versa, given precision values indicate only the efficiency of a specification to estimate an 

effect related to its own population. 

  

Further, I provide variants of the fixed and random effects our weighting schemes, which seek 

to recognise that estimates from particular papers may be over-represented in our meta 

estimates, problematic when there exists multiple true sub-population effects, or a large 

number of estimates from imprecise/low quality studies which may be disruptive for our 

overall estimates. To account for this, two augmented versions of FE1 and RE1 (FE2 and RE2, 

both given in table 1), reduce the weighting applied to any given estimate as the number of 

coded estimates from study from which it is derived (𝑛𝑖∈𝑠)12 increases. 

 

Finally, I also apply a funnel asymmetry test (FAT) to each of our WLS models to test for 

publication bias. Publication bias occurs when researchers intentionally manipulate the 

estimates reported in a study in order to satisfy some desired characteristic (typically 

statistical significance). If I do not control for publication bias, the validity of this meta-analysis 

is threatened. I can include these controls by observing the relationship that exists between 

estimate effects and their respective standard errors, calculated: 

SE(PCCi) = √
1−(𝑃𝐶𝐶𝑖

2)

𝑑𝑓𝑖

13 

 
12 Where n is a number of estimates, and s is a given study  

 
13 dfi  refers to the degrees of freedom of a given estimate 
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Should publication bias exist, I expect there to be some relationship between effect sizes and 

their respective standard errors, the more imprecise (i.e. larger standard errors) the 

estimator, the more extreme estimates must be produced to achieve statistically significant 

estimates. As an estimator becomes more precise, less extreme estimates are required to 

achieve statistically significant results as standard errors tighten. Hence, in the case of 

publication bias, I expect to see a positive relationship between estimated effect size, and 

their related standard errors. I conduct the FAT by running each of our WLS weighting 

variants, but also controlling for the standard errors associated with each PCC estimate: 

 

𝑃𝐶𝐶𝑖
𝜀

𝜔𝑖
=  

𝜇

𝜔𝑖
+

𝑒𝑖

𝜔𝑖
+ 𝛽

𝑆𝐸(𝑃𝐶𝐶𝑖)

𝜔𝑖
  𝑖 = 1,2, … , 𝑁 

  

 

 

Table 1 

Weight Calculations 

Weight  Method  

Fixed Effect Weight 1 (FE1) 
 

𝑆𝐸(𝑃𝐶𝐶𝑖)   

Random Effects Weight 1 (RE1) 
 

√𝑆𝐸(𝑃𝐶𝐶𝑖) 2 +  𝑡2 

Fixed Effect Weight 2 (FE2) 
 

𝑆𝐸(𝑃𝐶𝐶𝑖)   ⋅ √𝑛𝑖∈𝑠  

Random Effect Weight 2 (RE2) 
 

√𝑆𝐸(𝑃𝐶𝐶𝑖) 2 +  𝑡2 ⋅ √𝑛𝑖∈𝑠 

Weights as given in Duan et al. (2020)  
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III.2 

Bayesian Model Averaging 

 

Our WLS regressions from section III.1 have the purpose of estimating generalised robot-

employment outcome (and comment on publication bias), however it seems unlikely that this 

relationship is constant under all circumstances, but what are the circumstances that may 

cause this relationship to change? Meta analysis allows us to explore this relationship in much 

greater detail. By coding a number of potentially relevant characteristics (discussed in greater 

detail in section IV.1), I can use meta analysis techniques to attempt to uncover which of these 

factors may exist within the true robot-employment relationship, and the size of their 

influence.  

 

Bayesian model averaging (BMA) involves estimating a randomly selected (using Monte Carlo 

Markov Chain (MCMC) sampling) set of all possible specifications given our coded control 

variables and averaging the estimated coefficients associated with each item within each 

specification, weighted by posterior probabilities (i.e. the probability that a given specification 

actually occurs). 

 

The method (Steel (2011)) treats the model specification as a random variable, and uses the 

data available to conduct inferences. To describe the dataset (𝑦), consider all the 
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specifications that may exist given the coded data14 𝑆𝑖, 𝑖 = 1,2 … 𝐼, grouped in the space 𝛿. In 

order to give a Bayesian model (a model that draws its inferences from the posterior 

distribution) of the problem, I specify a prior 𝑃(𝑆𝑖) on 𝛿, the data will then lead to a posterior 

𝑃(𝑆𝑖| 𝑦). I then use this posterior to determine the posterior model probabilities for each 

MCMC sampled specification of being true (i.e. the chance a given specification is the actual 

specification that describes the robot-employment relationship). As  described in section III.1, 

I then run a series WLS regressions of each of the MCMC sampled specifications, before 

averaging the estimated effect of each coded variable under each specification, weighted by 

the posterior model probability that the specification from which a given variables’ effect size 

estimate was derived from is accurate. The estimated effect of any given variable through 

BMA is therefore a probability weighted combination of WLS estimated variable effects.  

 

 

III.3 

Backwards Stepwise Regressions 

 

Using the Bayesian information criterion or Schwartz information criterion (Wit et al.  (2012)), 

I utilise a backwards stepwise regression procedure. The model works by removing variables 

from a specification containing all coded variables until the lowest possible BIC/SIC value is 

returned. In other words, until I have a model the variables most likely to exist in the true 

 
14 more detail on our coding process given in section IV.1 
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specification according to BIC/SIC. I can then run standard WLS regressions which control for 

these variables to determine their effect size. 

 

BIC/SIC provides an index value for model selection, the lower the value, the better the 

proposed model is said to fit the true model. The equation for BIC/SIC values are given:  

𝐵𝐼𝐶 = 𝑘(𝑙𝑛 (𝑛) ) − 2𝑙𝑛 (𝐿𝜀) 

 

Where 𝑘 is the number of explanatory variables, 𝑛 is the sample size, and 𝐿𝜀  is the maximised 

value of the likelihood function of the specification. Minimising the BIC corresponds to 

maximizing the posterior model probability, as discussed in section III.2.  

 

I use this backwards stepwise regression, alongside a WLS specification which controls for all 

coded controls as a supplement for our BMA analysis. Further, I have the ability to lock in 

variables to our equation which I believe have particularly high explanatory value. In section 

IV.4, I conduct 3 separate analyses which both present a WLS specification including all 

variables, alongside a backward stepwise regression which locks in some variables which have 

an influence on the robot-employment effect that appears of particular interest given our 

findings in our prior analyses (i.e. BMA and WLS). 
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IV 

Analysis  

IV.1 

Data characteristics 

 

The primary interest of the present study is in discerning some overarching broad 

employment effect resulting from robot use. Our analysis will be conducted in the form of a 

quantitative review of all found literature which produces some original econometric 

estimation of the robot-employment relation. In obtaining the data for this study, I have 

attempted to collect all relevant estimates (2438 estimates) found throughout this field of 

study, hence, inferences made in this section are relevant to the entire branch of literature. 

For each of these estimates, I code a number of specification variables, which are defined in 

Table 2. 

                                               Table 2   
Variable  Code Description   

 1 0 Average  No. of 1’s 

Exoutlier Outliers 
excluded from 
sample  

No outliers 
excluded 

 

0.1493 
 

 

 

364 
 
 

Fore Estimate 
controls for 
foreign robot 
exposure 

Foreign robot 
exposure not 
controlled for 

 

0.2937 
 

 

 
716 

Reglev Analysis at 
regional level 

Analysis not at 
regional level 

 

0.5939 

 
 

 
1448 

Invlev Analysis at 
individual level 

Analysis not at 
individual level 

 

0.1144 
 

 

 
279 
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Conlev Analysis at 
country level 

Analysis not at 
country level 

 

0.1509 
 

 

 
368 

Indlev Analysis at 
industry level 

Analysis not at 
industry level 

 

0.4143 

 
 

 
1010 

HS High skill 
specific 
employment 

Not high skill 
specific 
employment 

 

0.0279 
 

 

 
68 

MS Medium skill 
specific 
employment  

Not medium 
skill specific 
employment  

 

0.0090 

 
 

 
22 

LS Low skill 
specific 
employment  

Not low skill 
specific 
employment 

 

0.0418 
 

 

 
102 

Manufacturing  Manufacturing 
specific 
employment 

Not 
manufacturing 
specific 
employment   

 

0.1522 

 
 

 
371 

Automotive Automotive 
specific 
employment 

Not 
automotive 
specific 
employment  

 

0.0209 

 
 

 
51 

Services  Services 
specific 
employment 

Not services 
specific 
employment 

 

0.0459 

 
 

 
112 

Allareas Non-specific 
employment  

Specified 
employment 

 

0.5287 

 
 

 
1289 

TFF Time fixed 
effects 
included 

No time fixed 
effects 
included  

 

0.4959 

 
 

 
1209 

IndivFF Individual 
fixed effects 
included 

No individual 
fixed effects 
included  

 

0.0431 

 
 

 
105 

IndusFF Industry fixed 
effects 
included  

No industry 
fixed effects 
included  

 

0.2760 

 
 

 
673 

CountryFF Country Fixed 
effects 
included  

No country 
fixed effects 
included 

 

0.1226 

 
 

 
299 

RegFF Region Fixed 
effects 
included  

No regional 
fixed effects 
included  

 

0.7317 

 
 

 
1784 
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PopCon Controls for 
population 
size 

Does not 
control for 
population 
size 

 

0.4549 

 
 

 
1109 

GenCon Controls for 
gender share 

Does not 
control for 
gender share 

 

0.5915 

 
 

 
1442 

AgeCon Controls for 
age share 

Does not 
control for age 
share 

 

0.4733 

 
 

 
1154 

EducCon Controls for 
education 
shares  

Does not 
control for 
education 
shares 

 

0.5980 

 
 

 
1458 

Ethcon  Controls for 
ethnicity 
shares  

Does not 
control for 
ethnicity 
shares 

 

0.3052 

 
 

 
744 

OccCon Controls for 
occupation 
shares  

Does not 
control for 
occupation 
shares 

 

0.5094 

 
 

 
1242 

SkiCon Controls for 
skill level 
shares  

Does not 
control for skill 
level shares 

 

0.0500 

 
 

 
122 

CapCon Controls for 
capital 
exposure 

Does not 
control for 
capital 
exposure 

 

0.2416 

 
 

 
589 

ImpCon Controls for 
import 
exposure  

Does not 
control for 
import 
exposure 

 

0.4926 

 
 

 
1201 

WeightCon Uses some 
weighting 
scheme 

Does not use 
some 
weighting 
scheme 

 

0.5406 

 
 

 
1318 

IV Uses 
instrumental 
variable 
estimation 
method 

Does not use 
instrumental 
variable 
estimation 
method 

 

0.4516 

 
 

 
1101 

NIFR Does not use 
IFR robot data 

Uses IFR robot 
data 

 

0.1550 

 
 

 
378 
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Table 2 also reveals some interesting quantitative information about the robot-employment 

effect literature. I notice a strong tendency for estimates to be conducted at least partially at 

either the regional (59.39% of estimates) or industry level15 (41.43% of estimates), while a 

relatively small proportion of estimate are conducted at the both the individual level (11.44%) 

and country level (15.09%), revealing a tendency of researchers to seeks seek some ‘middle 

ground’ between very fine, and very coarse sets of data.  

 

There appears to be some substantial interest in analysing the specific robot-employment 

effect of specific skill levels, with a collective 7.87% of the estimates being specifically related 

to employment of a particular skill level (low, medium or high). Similarly, there is a strong 

interest in understanding the effect of robots upon employment specific to some given fields 

of labour. I coded for manufacturing, services and automotive specific employment. 21.90% 

of estimates are specifically related to at least one of these fields, with a particularly strong 

interest in manufacturing employment, which is the focus of 15.22% of estimates. 

 

Many estimates also control for fixed effects. As might be expected for a branch of literature 

which almost exclusively uses panel data, many estimates control for time fixed effects 

(49.59%). Further, 73.17% of estimates control for regional fixed effects, to account for 

potential heterogenous employment effects across the regions of their respective analyses. 

 
15 Collective proportions of the analysis level code does not sum to 100% due to multi-level analyses 
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Further, many papers and estimates attempt to control for variables that may have some 

significant influence on the robot-employment relationship. There appears to be a strong 

belief within the literature that population values, gender shares, age shares, education 

shares, ethnicity shares, occupation shares, and import exposure (which are controlled for in 

45.49% 59.15%, 47.33%, 59.80%, 30.52% 50.94% and 49.26% of estimates respectively) may 

have some substantial influence on the robot-employment effect, such that they are worth 

controlling for to avoid omitted variable biases.  

 

Only a small proportion (15.5%) of estimates do not make use of the IFR dataset in their 

estimates. The literature is clearly highly dependent on this dataset, so it will be worth 

attempting to uncover the effect of this dataset in our quantitative analyses. Section II.4.C is 

dedicated to discussing some of the criticisms of this data, which may undermine the validity 

of both previous empirical research, and this meta study. 

 

Finally, to make generalised claims of an effect, it is necessary that the related literature 

explores the effect of interest broadly. Where significant gaps in research exist, the general 

claims that I eventually make must be restricted. Of the 32 papers collected for this study, 22 

focus their analysis specifically on the effect within a single nation, while 9 of these papers 

conduct their estimates for effects in either Japan or the United States exclusively (4 

Japanese, 5 US). The remaining 10 studies collected do not limit themselves to only a single 

nation, but do typically place some restrictions on the breadth of the data they collect, often 
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focussing their respective efforts on relatively high income nations (e.g. European/ OECD/ 

Developed nations). Exceptions are de Vries et al. (2020), Fu et al. (2021), and Carbonero et 

al. (2020) which all utilise data from a wider national income range. 

 

There appears to be a majority interest in the literature of the effect of robotics within highly 

developed nations (likely due to the fact these nations are the most highly robotised, and 

hence have the most relevant data available), and only limited literature which seeks to 

analyse the effect for developing nations. Hence, I am cautious in making globally generalised 

claims from this study. Each of the papers coded in our analysis are listed in table 3. 

 

Table 3 

Author  Release date Area of analysis  

Acemoglu and Restrepo 2017 United States  

Anelli, Giuntella and Stella 2019 United States  

Borjas and Freeman 2020 United States  

Micco 2019 United States  

Sequeira, Garrido and Santos  2020 United States  

Adachi, Kawaguchi and Saito  2020 Japan 

Dekle  2020 Japan 

Eggleston, Lee and Iizuka 2021 Japan 

Ni and Obashi 2021 Japan 

Acemoglu, Lelarge and 
Restrepo   

2020 France  

Aghion, Antonin and Bunel  2019 France  

Camiña, Díaz-Chao and 
Torrent-Sellens 

2020 Spain 

Koch, Manuylov and Smolka 2019 Spain 

Dauth, Findeisen, Suedekum 
and Woessner 

2017  Germany  

Dauth, Findeisen, Suedekum 
and Woessner 

2018 Germany 

Giuntella and Wang  2019 China 
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Stemmler 2019 Brazil 

Dottori 2020 Italy   

Kariel 2021 United Kingdom 

Faber  2020 Mexico 

Kugler, Kugler, Ripani and 
Rodrigo 

2020 Columbia 

Dixon, Hong and Wu 2020 Canada 

Anton, Klenert, Fernandez-
Macias, Brancati and Alaveras 

2020 General (European nations) 

Blanas, Gancia and Lee 2019 General (European nations) 

Chiacchio, Petropoulos and 
Pichler 

2018 General (European nations) 

Klenert, Fernandez-Macias and 
Anton 

2020 General (European nations)  

Compagnucci, Gentili, 
Valentini and Gallegati 

2019 General (OECD nations) 

Carbonero, Ernst, and Weber 2020  General (Developed and 
Emerging economies) 

de Vries, Gentile, Miroudot 
and Wacker 

2020 General (High income and 
emerging economies) 

Fu, Bao, Xie and Fu 2021 General (Developed and 
developing economies) 

Graetz and Michaels 2018 General (Developed 
economies 

Jung and Lim 2020 General (Developed 
economies  

 
 
 

Next, I present some general summary statistics of the outcome variables of interest, 

presented in table 4. Our PCC estimates have an extremely wide distribution, with a range of 

[-0.927,0.744], and mean and median PCC values of -0.027 and -0.012 respectively. Thus, the 

distribution of estimated effects is very wide, but the average effect is negligible.  Our t 

statistics tells a similar story, with a distribution of [-15.6, 95.9], and a mean and median of 

−0.6 and -0.7 respectively. Such a wide distribution of estimates creates instability when 

running our fixed effect and random effects models. To account for this, and to avoid 

significant outliers driving our results, I omit the most extreme 1% of these PCC values in all 

future analysis. Table 4 also presents summary statistics for our main outcome variables both 

before and after this restriction is applied. 
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The following graphs (figures 2-5) are a visual representation of our estimated effect sizes 

both prior and post omitting these extreme values. It is clear visually that the general 

structure of the dataset has remained essentially identical, but has simply shortened the 

broad tails that exist on these distributions. 

 

 

 

 

 
 

Table 4 
 T statistic 

Unrestricted  
T statistic 
Restricted 

PCC 
Unrestricted 

PCC Restricted 

 

Mean  -0.588 
 

-0.845 
 

-0.027 -0.026 
 

Median -0.746 
 

-0.746 
 

-0.012 
 

-0.012 
 

Minimum -15.571 
 

-15.571 
 

-0.927 
 

-0.507 
 

Maximum 95.883 
 

26.000 
 

0.743 
 

0.416 
 

SD 5.561 
 

3.290 
 

0.145 
 

0.113 
 

1st quartile  -2.750 
 

-2.725 
 

-0.088 
 

-0.083 
 

3rd quartile  1.257 
 

1.211 
 

0.021 
 

0.019 
 

1% -9.715 
 

-9.823 
 

-0.507 
 

-0.313 
 

99% 9.246 
 

8.117 
 

0.418 
 

0.338 
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Figure 2 

Figure 3 
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IV.2 

Weighted Least Squares 

 

Described in greater detail in section III.1, I present our Fixed Effect weighted WLS estimates 

in Table 5. Such a model relies on the assumption that there exists one true robot-

employment effect size (i.e. there is no heterogenous sub-population effect sizes) that each 

of the estimates collected in our dataset seeks to estimate. This key assumption of Fixed Effect 

Figure 4 

Figure 5 
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weighting is not realistic in this context, however. As discussed in section IV.1, the literature 

collected covers a diverse range of nations, regions, time periods, and employment types. It 

is not reasonable to assume that there exists only one true robot-employment effect that 

applies exactly to every form of labour. Given this, the results of a Fixed Effect estimate can 

be seriously misinformative due to its pure precision-based weighting. In our case for 

example, estimates formed in Kugler et al. (2020) make use of an extremely high number of 

observations, causing these estimates to be extremely precise. This essentially results in the 

fixed effect estimator being almost entirely dependent (99.22% weighting under FE1) on 

results from Kugler et al. (2020), a study which specifically estimates the short run robot-

employment effect in Columbia. 

Table 5 
Fixed effect and Random effects estimates 

Variable  FE1 FE2 RE1 RE2 

No publication bias correction (Panel A) 

Constant  -0.0000764 -0.0000688 -0.0271 -0.00909 
 (0.0000119) (0.0000173) (0.0020) (0.01427) 

Publication bias correction (Panel B) 

Constant  0.00000536 -0.0000769 -0.0233 0.00544 

 (0.0000671) (0.0000473) (0.0193) (0.01538) 

SE PCC -0.848 0.0838 -0.1326 -0.46264 

 (0.725) (0.545) (0.3755) (0.42878) 

Cluster robust standard errors given in brackets 

 

Since the Fixed effect model is clearly not a useful estimator for this meta-analysis, I seek an 

alternative weighting for our WLS estimator. The random effects model, also described in 

greater detail in III.1, is an obvious choice, given its capacity to account for a series of sub-

populations, each with their own respective true robot-employment effect.  
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For the sake of completeness, I present Fixed Effect estimates of the robot-employment effect 

in table 5, but for reasons mentioned previously, I cannot use these estimates to make any 

economically sound claims. The random effects estimates produced in Panel A of table 5 

produce mixed results. RE1 suggests a highly statistically significant negative result, but yet 

the estimated effect size falls below the minimum threshold for a small effect as suggested 

by Doucouliagos (2011). RE2 of the random effects estimates additionally fails to achieve 

statistical significance, and similarly produces an estimated effect size falling below the 

minimum threshold for a small effect. Further, these panel A estimates do not control for 

potential publication bias in the literature. 

 

In panel B of table 5, I reproduce the Fixed Effect and Random Effects estimations as in Panel 

A, but include standard errors as a control variable in our WLS model. This is known as a 

Funnel Asymmetry Test (FAT). Given the expected association between effect sizes and 

standard errors under publication bias (described in section III.1), this method both serves as 

a control for publication bias, and as a simple test for the existence of publication bias itself.  

 

Again, Fixed Effect estimates are produced in panel B of table 5, but cannot be used for making 

economically sound claims. Our random effects estimates using FAT appear ineffective in 

uncovering some genuine robot-employment effect. Under both specifications, I find 

statistically insignificant estimates. Further, both estimated effect sizes fall below the 

minimum threshold for a small effect as suggested by Doucouliagos (2011). In other words, 

these tests indicate there is no general robot-employment effect The results also suggest that 

there does not appear to be a statistically significant presence of publication bias within the 
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literature, further backed by the observation that our Random Effects estimates for the robot-

employment effect change very little between the cases where I do, and do not control for 

publication bias. In other words, panel A estimates do not suffer from omitted variable bias 

due to not controlling for publication bias. 

 

IV.3 

Bayesian Model Averaging 

 

So far, I have made claims of the general robot-employment effect, but as seen in our 

distributions t-statistic and PCC distributions, there exists much variation between individual 

estimates and studies. Are these differences the result of random variability or heterogeneity-

causing factors between estimates? Understanding the sources of differences in estimated 

effects between estimates and studies is a primary value of meta-analysis. Bayesian model 

averaging allows us to investigate these sources of heterogeneity. The method works by 

estimating all possible specifications given a set of collected control variables before 

averaging the coefficients associated with each variable, weighted by the posterior 

probabilities (i.e. the probability that a given specification actually occurs) of each respective 

specification. Such a method attempts to recognise the uncertainty associated with every 

plausible scenario, and incorporate this uncertainty into our estimates, with the disadvantage 

that no one specific specification is examined. In this case however, due to the high number 

of variables, BMA uses a Monte Carlo Markov chain to sample from the set of all possible 

specifications. I present both FE1 and RE1 estimates using BMA in table 4.  



59 

 

Posterior inclusion probability (PIP) refers to the probability that a given variable is part of the 

actual relationship that exists. A value of 0 suggests that the variable certainly does not exist 

in the actual relationship, while a value of 1 suggests the opposite. Posterior mean and 

standard error (Post Mean and Post SD) refer to the weighted (weighted by the likelihood 

value of each given specification) average of a variable’s estimated coefficients and standard 

errors values respectively. Finally, positive sign (Pos Sign) refers to the likelihood weighted 

probability that the relationship that a given explanatory variable holds with the outcome 

variable is positive. A value of 0 suggests a certainly negative relationship, while a value of 1 

suggests a certainly positive relationship. Of course, the value of the suggestions made by 

these latter three outcomes are contingent on the value of the PIP.  

 

Table 6 
 BMA analysis  

Variable  FE1 RE1  

 PIP Post 
mean 

Post 
SD 

Pos Sign PIP Post 
Mean 

Post SD  Pos 
Sign 

NIFR 1.0000 
 

0.0188 0.0038 1.0000 0.9995 
 

0.0221 0.0045 
 

1.0000 

Reglev 1.0000 
 

-0.0223 0.0027 0.0000 1.0000  
 

-0.0473  0.0056        0.0000 

Invlev 0.9874 
 

0.0155 0.0041 1.0000 1.0000 0.0370 0.0069 1.0000 

Conlev 0.0281 
 

0.0001 0.0013 0.9696    
 

0.9949 
 

0.0603 0.0136 
 

0.0000 
 

Indlev 0.9851 
 

0.0138 0.0034 1.0000 1.0000 
 

0.0552 0.0057 
 

1.0000 

Manufacturing 0.0246 
 

0.0000 0.0000 1.0000 0.8861 
 

0.0162 0.0075 
 

1.0000 

Automotive 0.1081 
 

-0.0000 0.0001 0.0000 0.0605 
 

-0.0011 0.0054 
 

0.0000 
 

Services  0.0271 
 

0.0000 0.0003 1.0000 0.8947 
 

0.0261 0.0118  
 

1.0000 
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Table 6 
 BMA analysis  

Variable  FE1 RE1  

 PIP Post 
mean 

Post 
SD 

Pos Sign PIP Post 
Mean 

Post SD  Pos 
Sign 

NIFR 1.0000 
 

0.0188 0.0038 1.0000 0.9995 
 

0.0221 0.0045 
 

1.0000 

High Skill 0.0653 
 

-0.0006 0.0025 0.0006   
 

0.0203 
 

0.0000 0.0016 
 

0.3822 
 

Medium Skill 0.1268 
 

-0.0042 0.0126 0.0000 0.0503 
 

-0.0012 0.0066 
 

0.0000 

Low Skill 0.8752 
 

-0.0149 0.0073 0.0000 0.9977 
 
 

-0.0039 0.0090 
 

0.0000 

All Areas 0.0224 
 

-0.0000 0.0000 0.0000 0.1030 
 

-0.0010 0.0034        
 

0.0000 
 

TFF 0.0227 
 

-0.0000 0.0001 0.1548 
 

1.0000 
 

0.0296 0.0046 
 

1.0000 

InvFF 0.1224 
 

-0.0002 0.0006 0.0056 
 

0.0215 
 

-0.0001 0.0016  
 

0.0687 
 

IndusFF 0.0588 
 

-0.0001 0.0003 0.0091   
 

0.0319 
 

-0.0002 0.0012 
 

0.0000 

CountryFF 0.0376 
 

0.0002 0.0018 1.0000 0.9943 
 

0.0556 0.0131 
 

1.0000 

RegFF 0.8172 
 

0.0019 0.0011 1.0000 0.0280 
 

0.0001 0.0010        
 

0.9923 
 

PopCon 1.0000 
 

-0.0949 0.0053 0.0000 1.0000 
 

-0.0839 0.0057        
 

0.0000 

GenCon 1.0000 
 

0.0870 0.0071 1.0000 1.0000 
 

0.0547 0.0087 
 

1.0000   
 

AgeCon 0.0430 
 

-0.0002 0.0010 0.0000 1.0000 
 

0.1020 0.0071 
 

1.0000 
 

EducCon 0.9297 
 

0.0169 0.0067 1.0000 0.2421 
 

-0.0044 0.0087 
 

0.0000 

EthCon 1.0000 
 

-0.1080 0.0046 0.0000 1.0000 
 

-0.1110 0.0067 
 

0.0000 

OccCon 0.6043 
 

-0.0058 0.0055 0.0000 0.0826 
 

-0.0008 0.0032 
 

0.0000 

SkiCon 0.0224 
 

-0.0002 0.0023 0.0000 0.0317 
 

-0.0003 0.0025 
 

0.0000 

CapCon 0.0704 
 

-0.0001 0.0004 0.0000 0.0951 
 

-0.0009 0.0031 
 

0.0000 

ImpCon 0.0224 
 

-0.0000 0.0000 0.0000 0.0246 
 

-0.0001 0.0009  
 

0.0053   
 

WeightCon 0.9982 
 

-0.0036 0.0010 0.0000 1.0000 
 

-0.0335 0.0040 
 

0.0000   
 

IV 0.9687 
 

-0.0141 0.0040 0.0002   
 

0.0248  
 

0.0000 0.0009 
 

0.9337 
 



61 

Table 6 
 BMA analysis  

Variable  FE1 RE1  

 PIP Post 
mean 

Post 
SD 

Pos Sign PIP Post 
Mean 

Post SD  Pos 
Sign 

NIFR 1.0000 
 

0.0188 0.0038 1.0000 0.9995 
 

0.0221 0.0045 
 

1.0000 

NonIV 0.9688 
 

-0.0140 0.0039 0.0007 
 

0.0227 
 

-0.0001 0.0009        
 

0.0220   
 

ExOutlier 0.0391 
 

-0.0000 0.0000 0.0000 0.0609 
 

0.0005 0.0022 
 

1.0000    
 

         
         

Table 6 reports the results of BMA using both fixed and random effects weights. Cases which 

achieve a PIP value of 1 and a conditional positive sign of 1 (exists in the true specification 

and have a positive relationship) are highlighted in bold italics, while items that achieve a PIP 

of 1 and a conditional positive sign of 0 (cases which exist in the true specification and have a 

negative relationship) are highlighted in italics.  

 

As suggested previously, I am unable to make use of Fixed Effect estimates to inform our 

results but are provided for the sake of completeness. 9 items satisfy both having a PIP value 

of 1 and a positive sign value of either 1 or 0 under random effects weighting, namely: Reglev, 

Invlev, Indlev, TFF, PopCon GenCon, AgeCon, EthCon and WeightCon. Our data level items: 

Reglev, Invlev, Indlev (Regional, Individual and Industry respectively), which satisfy both of 

the previously mentioned criteria, suggest that the level at which analysis is conducted affects 

the PCC of a robot-employment relationship estimate by values of -0.0473, 0.0370 and 0.0552 

respectively, relative to a random effects WLS estimate conducted at some other level (i.e. a 

level not coded for). Although there appears to be some notable differences in the effect sizes 

of these data level variables, none of these estimates meet the minimum threshold for a small 

effect according to Doucouliagos (2011). Time fixed effects also exist in the true specification 
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according to BMA analysis. Estimates controlling for time fixed effects have higher PCCs, by a 

value of 0.0296, again, failing to meet the threshold for a small effect size.  

 

The random effects specification of our BMA analysis finds a number of controls which exist 

in the true specification; namely: PopCon, GenCon, AgeCon, EthCon and WeightCon 

(Population, Gender, Age, Ethnicity and Weight control respectively) which affect PCCs values 

by -0.0839, 0.0547, 0.1020, -0.1110 and -0.0335 respectively. Doucouliagos (2011) guidelines 

suggest PopCon (negative), AgeCon (positive) and EthCon (negative) estimated effects meet 

the criteria for having a small influence (absolute size of at least 0.07) on the robot-

employment relationship. 

 

Our variable for the IFR dataset comes extremely close to a PIP value of 1 (.9995) in our 

random effects BMA analysis, in other words, a variable for IFR/non-IFR data almost certainly 

exists in the true specification. Further, our analysis suggests that the effect of not estimating 

using the IFR data is certainly positive (i.e. Using IFR data decreases the effect size of the 

robot-employment relationship). The estimated effect in our analysis however does not meet 

the Doucouliagos (2011) criteria for a small effect, giving an effect size estimate of 0.0221.  

 

Finally, I notice that the method by which our estimates are made does not appear to have 

any significant influence on effect estimates. Our random effects BMA analysis suggests that 

a variable for IV estimates does not exist within the true specification, and further gives an 
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extremely small effect size estimate, well below the Doucouliagos (2011) threshold for a small 

effect. 

 

IV.4 

Backwards Stepwise Regressions  

 

Using the Bayesian information criterion (BIC) or Schwartz information criterion (SIC), I can 

utilise a backwards stepwise regression procedure, sequentially selecting the ‘best’ set of 

variables that return the lowest BIC/SIC values, in other words, the variables most likely to 

exist in the true specification. I conduct 3 backwards stepwise regressions which each lock in 

some variables of interest, alongside a WLS specification which controls for all coded controls 

as a supplement for our BMA analysis. The backwards stepwise regression is designed to find 

the specification most likely to be the actual relationship of interest, and then simply run this 

WLS specification.  

 

In table 7 I perform backwards stepwise regression, locking in each of the coded levels at 

which analysis is made (i.e. Reglev, Invlev, Conlev, Indlev).  For this specification (and those 

further below) I present results based on our 4 weighting schemes (FE1, FE2, RE1 and RE2) 

and further lock in standard errors of effect estimates as a means of controlling for publication 

bias.  
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Table 7 

Variable  FE1 FE2 RE1 RE2 

All controls 
SE 0.41930 0.29015 -0.01207 

 
-0.47927 
 

 (0.34508) (0.38079) (0.22711) 
 

(0.30413) 
 

Reglev -0.02391*** -0.02106** 
 

-0.04733*** 
 

-0.03445* 
 

 (0.00720) (0.00739) 
 

(0.01303) 
 

(0.01641) 
 

Invlev 0.01462 
 

0.02215. 
 

0.03614 
 

0.04880* 
 

 (0.00916) 
 

(0.01247) 
 

(0.02263) 
 

(0.02343) 
 

Conlev -0.00561 
 

-0.04311. 
 

-0.05700 
 

-0.05814. 
 

 (0.02952) 
 

(0.02237) 
 

(0.03952) 
 

(0.03528) 
 

Indlev 0.01316 
 

0.01506 
 

0.05343. 
 

0.04188 
 

 (0.01003) 
 

(0.01073) 
 

(0.02981) 
 

(0.03137) 
 

Backwards stepwise regression 

SE 0.00845 
 

0.31014 
 

0.00845 
 

0.00845 
 

 (0.29618)  
 

(0.32194) 
 

(0.22222)     
 

(0.28615)  
 

Reglev -0.04734*** 
 

-0.02133**     
 

-0.04734*** 
 

-0.04734** 
 

 (0.00576) 
 

(0.00766) 
 

    (0.01153)    
 

(0.01618)    
 

Invlev 0.03747*** 
 

0.01670 
 

0.03747* 
 

0.03747. 
 

 (0.00880)  
 

(0.01058) 
 

(0.01792) 
 

(0.01944) 
 

Conlev -0.05966. 
 

-0.04284.  
 

-0.05966  
 

-0.05966.  
 

 (0.03231) 
 

(0.02290) 
 

(0.03878)  
 

(0.03452) 
 

Indlev 0.05366*** 
 

0.01266. 
 

0.05366*  
 

0.05366* 
 

 (0.00833)  
 

(0.00752)  
 

(0.02462) 
 

(0.02720) 
 

Cluster robust standard errors given in brackets 
(.)Statistical significance at 10% level 
(*) Statistical significance at 5% level 
(**)Statistical significance at 1% level 
(***)Statistical significance at 0.1% level 
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In table 8, I lock in each of those control variables which were found to exist in the true 

specification, have a relationship of a definite direction, and have a strong enough 

relationship to qualify for at least a weak effect according to Doucouliagos (2011) (i.e. Popcon, 

Agecon and Ethcon). 

Table 8 

Variable  FE1 FE2 RE1 RE2 

All controls 

SE 0.41930 0.29015 -0.01207 
 

-0.47927 
 

 (0.34508) (0.38079) (0.22711) 
 

(0.30413) 
 

Popcon -0.09334** 
 

-0.07889** 
 

-0.08059* 
 

-0.06921* 
 

 (0.02886) 
 

(0.02507) 
 

(0.03328) 
 

(0.03333) 
 

Agecon -0.00183 
 

0.00215 
 

0.10143** 
 

0.12334** 
 

 (0.00742) 
 

(0.00853) 
 

(0.03562) 
 

(0.04589) 
 

Ethcon -0. 10759*** 
 

-0.09423*** 
 

-0.01620** 
 

-0.11297** 
 

 (0.02766) 
 

(0.02357) 
 

(0.02516) 
 

(0.03705) 
 

Backwards stepwise regression 

SE 0.00845 
 

0.28768 
 

0.00845  
 

0.00845 
 

 (0.40157) 
 

(0.33609)  
 

(0.22222) 
 

(0.28615) 
 

Popcon -0.08359** 
 

-0.07913*** 
 

-0.08359** 
 

-0.08359** 
 

 (0.02932) 
 

(0.02316)    
 

(0.02725) 
 

(0.03163) 
 

Agecon 0.09789*** 
 

0.00278 
 

0.09789** 
 

0.09789* 
 

 (0.00662)    
 

(0.00728) 
 

(0.03260)  
 

(0.04429) 
 

Ethcon -0.10759*** 
 

-0.09514*** 
 

-0.10759** 
 

-0.10759** 
 

 (0.02786) 
 

(0.02403) 
 

(0.03294)  
 

(0.03959) 
 

Cluster robust standard errors given in brackets 
(.)Statistical significance at 10% level 
(*) Statistical significance at 5% level 
(**)Statistical significance at 1% level 
(***)Statistical significance at 0.1% level 
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Finally, in table 9 I lock in the control for IFR data (i.e. NIFR). Although random effects BMA 

does not suggest NIFR certainty exists within the true specification (PIP= 0.9995), the IFR 

dataset is clearly highly influential in this literature, so is worth examining here. 

 

 

Table 9 

Variable FE1 FE2 RE1 RE2 

All controls 

SE 0.41930 0.29015 -0.01207 
 

-0.47927 
 

 (0.34508) (0.38079) (0.22711) 
 

(0.30413) 
 

NIFR 0.01739. 
 

0.02055 
 

0.02234 
 

0.03588 
 

 (0.00963) 
 

(0.01342) 
 

(0.01654) 
 

(0.02380) 
 

Backwards stepwise regression 

SE 0.00845 
 

0.31014 
 

0.00845 
 

0.00845 
 

 (0.39492) 
 

(0.32194) 
 

(0.22222)     
 

(0.28615) 
 

NIFR 0.02344**     
 

0.01927. 
 

0.02344 
 

0.02344  
 

 (0.00860) 
 

(0.01089) 
 

(0.01689) 
 

(0.02277) 
 

Cluster robust standard errors given in brackets 
(.)Statistical significance at 10% level 
(*) Statistical significance at 5% level 
(**)Statistical significance at 1% level 
(***)Statistical significance at 0.1% level 

 

 

Are the estimate sizes of the BMA analysis, all-variable regressions, and backwards stepwise 

regressions in alignment when using random effects weighting? BMA analysis suggests 

Reglev, Invlev and Indlev should exist within the true specification, but also suggests effect 

size estimates which are below the Doucouliagos (2011) small effect minimum threshold. In 

table 7, all-variable regressions, and backwards stepwise regressions follow this claim, with 

none of our coded analysis level variables estimated to be beyond the minimum threshold for 
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a small effect under both our alternative random effects weighting schemes. The results from 

our alternative fixed effect weighting schemes are primarily given for the sake of interest, but 

are also in alignment with this claim. As claimed in our BMA analysis, I find in table 8, each of 

the effect sizes of Popcon, Agecon and Ethcon are beyond the minimum threshold for a small 

effect (negatively, positively, and negatively respectively) under both random effects 

weighting schemes, in both our all-variable specification and our backwards stepwise 

regression (bar Ethcon in the all-variable specification under RE1). Further, in each of these 

cases, statistical significance of at least a 5% level is achieved.  

 

Finally, in table 9 I again test the importance of using the IFR dataset on estimated robot-

employment effect sizes. Our BMA analysis reported an effect of the IFR dataset not beyond 

the minimum threshold for a small effect according to Doucouliagos (2011). Both our all-

variable specification and backward stepwise regression find similar results under both 

Random effects weighting schemes, and both Fixed effect weighting schemes.  

 

In Section IV.2, WLS found no significant presence of publication bias under either of the 

random effects weighting schemes. Further, no model, under the all-variable specification, or 

under a backwards stepwise regression finds a statistically significant estimate for the SEPCC 

coefficient, aligning with our previous suggestion that there exists no significant evidence of 

publication bias within the literature. 
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V 

Conclusion  

 

Acemoglu and Restrepo (2020), has sparked a significant interest in analysing the effect of the 

use of robots on labour employment, reviving the old debate of whether automation will 

destroy more jobs than it creates. Their study has been followed by a series of papers, each 

attempting to analyse this effect for different labour markets, and using different 

specifications. From 32 of such studies, I have collected 2438 individual estimates of the use 

of robots on human employment. This study quantitatively aggregates and analyses all of this 

empirical literature in an attempt to uncover a generalised robot-employment effect, assess 

influential factors and variables, and comment on the degree of publication bias within the 

literature. The key finding of this paper is that the literature suggests that, in general, there 

exists no sizable effect of robotics use upon labour employment. Further, I find that there 

exists no significant presence of publication bias within the literature. In other words, there 

does not appear to be a tendency of publishers to manipulate their reported effect estimates 

in order to satisfy some condition. These conclusions are confirmed using a wide variety of 

analytical techniques, including weighted least squares, Bayesian model averaging and 

backward stepwise regressions.  

 

Using random effects weights applied to Bayesian model averaging, a backwards stepwise 

regression, and a weighted least squares regression containing all coded variables, I also 

analyse both the likelihood of some potentially significant factors existing in the ‘true’ robot-

employment specification, and the effect size of these factors. I find controls for population 

size, age shares and ethnicity shares are very likely to be in the true specification and have 
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some significant (but also relatively small) influence (negative, positive, and negative 

respectively) on the size of the robot-employment effect. Hence, this suggests that it is a good 

idea to control for such variables in order to avoid issues of omitted variable bias. 

  

According to Bayesian Model Averaging, I find that controls for level at which analysis is 

conducted (regional level, individual level, country level or industry level), alongside both the 

time at which analysis is conducted (time fixed effects), and the data with which the analysis 

is conducted with (IFR/non-IFR) are likely to be in the true specification of the robot-

employment effect. However, I also find that none of these factors meet the minimum 

threshold, according to Doucouliagos (2011) for having a small influence on the general robot-

employment estimate. Interestingly, our random effects BMA analysis also suggests that a 

variable for the estimate method used (IV/Non-IV technique) does not exist within the true 

robot-employment specification and further gives an extremely small effect size estimate.  

 

Throughout the literature, there is extensive use of the International Federation of Robotics 

dataset, which provides data on robotics use across countries and continents. There have 

been several issues uncovered related to this dataset, which may be damaging to the validity 

of some of our coded estimates, and hence our meta-analysis itself. This study notes these 

potential problems, but the nature of the study means that little can be done to mitigate 

these issues. I further find a tendency of authors to focus their analysis on developed nations. 

Hence, the claims made in this paper are mainly generalisable to developed nations. 
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