Spatially Balanced Sampling with Local Ranking
Type of content
UC permalink
Publisher's DOI/URI
Thesis discipline
Degree name
Publisher
Journal Title
Journal ISSN
Volume Title
Language
Date
Authors
Abstract
A spatial sampling design determines where sample locations are placed in a study area so that population parameters can be estimated with good precision. Spatially balanced designs draw samples with good spatial spread and provide precise results for commonly used estimators when surveying natural resources. In this article, we propose a new sampling strategy that incorporates ranking information from nearby locations into a spatially balanced sample. If the population exhibits spatial trends, our simple local ranking strategy can improve the precision of commonly used estimators. Numerical results on several test populations with different spatial structures show that local ranking can improve the performance of a spatially balanced design. To show that local ranking is simple and effective in practice, we provide an example application for the health and productivity assessment of a Shiraz vineyard in South Australia. Supplementary materials accompanying this paper appear online.