Low-Complexity High-Throughput Decoding Architecture for Convolutional Codes
Type of content
UC permalink
Publisher's DOI/URI
Thesis discipline
Degree name
Publisher
Journal Title
Journal ISSN
Volume Title
Language
Date
Authors
Abstract
Sequential decoding can achieve a very low computational complexity and short decoding delay when the signal- to-noise ratio (SNR) is relatively high. In this paper, a low-complexity high-throughput decoding architecture based on a sequential decoding algorithm is proposed for convolutional codes. Parallel Fano decoders are scheduled to the codewords in parallel input buffers according to buffer occupancy, so that the processing capabilities of the Fano decoders can be fully utilized, resulting in high decoding throughput. A discrete time Markov chain (DTMC) model is proposed to analyse the decoding architecture. The relationship between the input data rate, the clock speed of the decoder and the input buffer size can be easily established via the DTMC model. Different scheduling schemes and decoding modes are proposed and compared. The novel high-throughput decoding architecture is shown to incur 3%-10% of the computational complexity of Viterbi decoding at a relatively high SNR.
Description
Citation
Keywords
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Fields of Research::46 - Information and computing sciences::4613 - Theory of computation::461301 - Coding, information theory and compression
Field of Research::08 - Information and Computing Sciences::0802 - Computation Theory and Mathematics::080201 - Analysis of Algorithms and Complexity