Reducing beam hardening effects and metal artefacts in spectral CT using Medipix3RX (2014-02-05)
View/ Open
Type of Content
OtherRelated resource(s)
http://arxiv.org/abs/1311.4528http://iopscience.iop.org/1748-0221/9/03/P03015/
Collections
Authors
Abstract
This paper discusses methods for reducing beam hardening effects and metal artefacts using spectral x-ray information in biomaterial samples. A small-animal spectral scanner was operated in the 15 to 80 keV x-ray energy range for this study. We use the photon-processing features of a CdTe-Medipix3RX ASIC in charge summing mode to reduce beam hardening and associated artefacts. We present spectral data collected for metal alloy samples, its analysis using algebraic 3D reconstruction software and volume visualisation using a custom volume rendering software. The cupping effect and streak artefacts were quantified in the spectral datasets. The results show reduction in beam hardening effects and metal artefacts in the narrow high energy range acquired using the spectroscopic detector. A post-reconstruction comparison between CdTe-Medipix3RX and Si-Medipix3.1 is discussed. The raw data and processed data are openly available for testing with other software routines.
Related items
Showing items related by title, author, creator and subject.
-
Reducing beam hardening effects and metal artefacts using Medipix3RX: With applications from biomaterial science
Rajendran, K.; Walsh, M.F.; de Ruiter, N.J.A.; Chernoglazov, A.I.; Panta, R.K.; Butler, A.P.H.; Butler, P.H.; Bell, S.T.; Anderson, N.G.; Woodfield, T.B.F.; Tredinnick, S.J.; Healy, J.L.; Bateman, C.J.; Aamir, R.; Doesburg, R.M.N.; Renaud, P.F.; Gieseg, S.P.; Smithies, D.J.; Mohr, J.L.; Mandalika, V.B.H.; Opie, A.M.T.; Cook, N.J.; Ronaldson, J.P.; Nik, S.J.; Atharifard, A.; Clyne, M.; Bones, P.J.; Bartneck, Christoph; Grasset, R.; Schleich, N.; Billinghurst, Mark (University of Canterbury. Biological SciencesUniversity of Canterbury. Computer Science and Software EngineeringUniversity of Canterbury. Electrical and Computer EngineeringUniversity of Canterbury. Human Interface Technology LaboratoryUniversity of Canterbury. Mathematics and StatisticsUniversity of Canterbury. Mechanical EngineeringUniversity of Canterbury. Physics and AstronomyUniversity of Canterbury. Biomolecular Interaction Centre, 2014)This paper discusses methods for reducing beam hardening effects using spectral data for biomaterial applications. A small-animal spectral scanner operating in the diagnostic energy range was used. We investigate the use ... -
Reducing beam hardening effects and metal artefacts in spectral CT using Medipix3RX
Rajendran, K; Walsh, M. F.; de Ruiter, N. J. A.; Chernoglazov, A. I.; Panta, R. K.; Butler, P. H.; Bell, S. T.; Woodfield, T. B. F.; Tredinnick, J.; Healy, J. L.; Bateman, C. J.; Aamir, R.; Doesburg, R. M. N.; Renaud, P. F.; Gieseg, S. P.; Smithies, D. J.; Mohr, J. L.; Mandalika, V. B. H.; Opie, A. M. T.; Cook, N. J.; Ronaldson, J. P.; Nik, S. J.; Atharifard, A.; Clyne, M.; Bones, P. J.; Bartneck, Christoph; Grasset, R.; Schleich, N.; Billinghurst, Mark; Butler, A. P. H.; Anderson, N. G. (2013-11-21)Studies on beam hardening and metal artefact reduction using Medipix All Resolution System (MARS) spectral scanner were carried out. Four datasets are provided - titanium phantom, titanium scaffold, magnesium scaffold and ... -
MARS spectral molecular imaging of lamb tissue: data collection and image analysis
Aamir, R.; Chernoglazov, A.; Bateman, C. J.; Butler, A.P.H.; Butler, P.H.; Anderson, N.G.; Bell, S.T.; Panta, R.; Healy, J.L.; Mohr, J.L.; Rajendran, K.; Walsh, M.F.; de Ruiter, J.A.; Giesig, S.P.; Woodfield, T.; Renaud, P.F.; Brooke, L.V.; Majid, S.A.; Clyne, R.; Glendinning, R.; Bones, P.J.; Billinghurst, Mark; Bartneck, Christoph; Mandalika, H.; Grasset, R.; Schleich, N.; Scott, N.; Nik, S. J.; Opie, A.; Janmale, T.; Tang, D.N.; Kim, D.; Doesburg, R.M.; Zainon, R.; Ronaldson, J.P.; Cook, N.J.; Smithies, D.; Hodge, K. (2013-10-31)In this experiment, a meat specimen was prepared from a fresh lamb chop, which included muscle (water-like), fat (lipid-like) and bone (calcium-like) regions, and scanned. We used a 2 mm thick CdTe sensor (128×128), bump ...