• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    Growth dynamics of braided gravel-bed river deltas in New Zealand

    Thumbnail
    View/Open
    Thesis_fulltext.pdf (22.94Mb)
    Wild_Use_of_thesis_form.pdf (145.2Kb)
    Author
    Wild, Michelle Anne
    Date
    2013
    Permanent Link
    http://hdl.handle.net/10092/8456
    Thesis Discipline
    Civil Engineering
    Degree Grantor
    University of Canterbury
    Degree Level
    Doctoral
    Degree Name
    Doctor of Philosophy

    This research has been undertaken to further our knowledge of decade-to-century timescale braided, gravel-bed river delta growth dynamics. The study included: a review of available literature; field studies; the development of microscale models for two study deltas; and the development of a simple numerical model incorporating movement of braided river channels across a delta topset (varying the location of sediment delivery to the delta).

    Results from the microscale modelling showed that successful physical modelling requires well-defined fixed boundaries and, ideally, good historical aerial photography for the estimation of the model time scale. A complex braided gravel-bed river delta system composed of two merging deltas entering a deep, low-energy receiving basins was able to be successfully modelled to provide valuable information on delta growth dynamics. However, a microscale model of a delta prograding into shallow receiving basins, with a large supply of fine sediment, was more difficult to calibrate and assess (partly due to limited field data), and was considered less reliable.

    The simple rule-based numerical model ‘DELGROW’, developed to simulate a braided river system entering a deep, low-energy body of water, requires a known sediment supply rate, as well as information on the braided river topography, submerged delta foreset, and lakebed bathymetry. Unlike simple 1-d width-averaged geometric models, DELGROW takes into consideration barriers (e.g. islands) as well as relatively complex converging braided river delta configurations. By changing the sediment supply, or modifying the river system, the response of the river system to various scenarios can also be assessed.

    Microscale models and DELGROW appear to realistically simulate decade-to-century timescale growth of braided gravel-bed river deltas entering a deep, low-energy, receiving basin. Both of these modelling methods initially use the supplied sediment to try and eliminate any riverbed irregularities (e.g. low areas), before continuing to advance and deposit sediment in a more evenly-distributed manner, whilst taking into consideration irregularities due to barriers, and asymmetric sediment sources such as merging deltas. Neither model can reliably predict locations of bank erosion, or channel avulsions that divert flow and sediment outside of the fixed model boundaries.

    Subjects
    river delta
     
    braided river
     
    microscale model
     
    numerical model
     
    physical model
    Collections
    • Engineering: Theses and Dissertations [2264]
    Rights
    https://canterbury.libguides.com/rights/theses

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us