• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Science
    • Science: Theses and Dissertations
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Science
    • Science: Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    Suitability of Tumour Tracking For The Verification of Respiratory Gated Radiation Therapy

    Thumbnail
    View/Open
    Thesis_fulltext.pdf (3.413Mb)
    Author
    Serpa-Lopez, Marco A.
    Date
    2011
    Permanent Link
    http://hdl.handle.net/10092/6597
    Thesis Discipline
    Physics
    Degree Grantor
    University of Canterbury
    Degree Level
    Masters
    Degree Name
    Masters of Science

    External beam radiotherapy (RT) is the primary treatment modality for patients with inoperable lung tumours. Respiration-induced motion and related intra-/interfractional variations present a series of limitations to the success of existing conventional treatment modalities for lung cancer. Subsequently, to minimise the effects of respiration different management techniques have been proposed and are available. Respiratory gated radiotherapy (RGRT) holds promise to improve dose conformity, reduce the normal tissue control probability while increasing the tumour control probability. Its effectiveness depends on precise tumour localisation and targeting during dose delivery. In this thesis, the suitability of RGRT for the compensation of breathing induced motion was investigated by means of phantom studies and film dosimetry. Both regular and irregular trajectories were simulated during gated dose delivery and their effects on dose distributions analysed. Respiration-induced motion led to dose blurring and hence to less conformal dose distributions, which resulted overall in underdose of the treatment planning volume and an overdose of healthy surrounding tissue. Compared to non-gated dose delivery, RGRT improved dose conformity by enabling steeper dose gradients, resulting in an increased sparing of healthy tissue, at the expenses of increased delivery times. In the presence of irregular motion paths the dosimetric advantages of RGRT were observed to decrease. In the absence of a clinical tool for treatment verification such irregularities may pass unnoticeable and may lead to poor treatment outcomes.

    Investigations of the suitability of a software tool for tracking lung tumours in portal images during RGRT demonstrated that it is possible to determine and track tumour motion during gated treatment. Both the residual tumour motion inside the gating window as well as the probability density function were used as measures to quantify tumour position and variability. Tracking information was sufficient to quantify residual motion and variability. Baseline drifts as well as sudden fluctuations in tumour positions were detected and quantified, which led to considerable variations in residual motion which in turn may result in marginal miss. Although this was a retrospective analysis of motion data, the tool showed a great potential for verification of the tumour position during RGRT and may possibly be useful for adaptation of the gating window.

    Subjects
    verification of respiratory gated radiation theraphy
     
    respiratory gated radiotherapy
     
    RGRT
     
    dose
     
    dosimetry
     
    respiration-induced
     
    non-gated dose
     
    dosimetric
     
    tumour
    Collections
    • Science: Theses and Dissertations [3296]
    Rights
    http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us