• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    A Semi-autonomous Wheelchair Navigation System

    Thumbnail
    View/Open
    thesis_fulltext.pdf (7.702Mb)
    Author
    Tang, Robert
    Date
    2012
    Permanent Link
    http://hdl.handle.net/10092/6472
    Thesis Discipline
    Mechanical Engineering
    Degree Grantor
    University of Canterbury
    Degree Level
    Masters
    Degree Name
    Master of Engineering

    Many mobility impaired users are unable to operate a powered wheelchair safely, without causing harm to themselves, others, and the environment. Smart wheelchairs that assist or replace user control have been developed to cater for these users, utilising systems and algorithms from autonomous robots. Despite a sustained period of research and development of robotic wheelchairs, there are very few available commercially.

    This thesis describes work towards developing a navigation system that is aimed at being retro-fitted to powered wheelchairs. The navigation system developed takes a systems engineering approach, integrating many existing open-source software projects to deliver a system that would otherwise not be possible in the time frame of a master's thesis.

    The navigation system introduced in this thesis is aimed at operating in an unstructured indoor environment, and requires no a priori information about the environment. The key components in the system are: obstacle avoidance, map building, localisation, path planning, and autonomously travelling towards a goal. The test electric wheelchair was instrumented with the following: a laptop, a laser scanner, wheel encoders, camera, and a variety of user input methods. The user interfaces that have been implemented and tested include a touch screen friendly graphical user interface, keyboard and joystick.

    Subjects
    Smart wheelchair
     
    SLAM
     
    obstacle avoidance
     
    path planning
     
    navigation
     
    robotics
    Collections
    • Engineering: Theses and Dissertations [2163]
    Rights
    https://canterbury.libguides.com/rights/theses

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us