• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    Linkage Synthesis and Optimisation Techniques with Skiboard Product Design Case Study

    Thumbnail
    View/Open
    thesis_fulltext.pdf (10.60Mb)
    Author
    Kauke, Lisa Marie
    Date
    2010
    Permanent Link
    http://hdl.handle.net/10092/6002
    Thesis Discipline
    Mechanical Engineering
    Degree Grantor
    University of Canterbury
    Degree Level
    Masters
    Degree Name
    Master of Engineering

    This thesis explores the design development and experimental testing of a planar linkage for the Skiboard, a novel snowsports equipment device. The Skiboard, similar to a skateboard in appearance and style of use, combines two short skis with a bindingless board. Its aim is to fill a gap in the snowsports market for a product that offers a wide range of freestyle and trick riding possibilities, beyond those of a snowboard, while being as stable and easy to ride as a pair of skis. While the concept of the Skiboard in itself is simple, the task of designing a mechanism to link the skis to the board is complex. To translate a gradual lean of the rider into a gradual and equal tilting of the skis requires a multi-loop linkage mechanism. The synthesis and analysis of a mechanism for this application was the inspiration for the development of the synthesis-related design tools presented in this thesis. Design methodologies and design software concepts have been developed for use by designers faced with under-defined, “black-box” linkage synthesis problems similar to the Skiboard mechanism synthesis task. A software-based design of experiments setup, called SMAC, is introduced in this thesis and was used throughout the linkage synthesis process for the Skiboard. One promising candidate mechanism, developed and chosen using SMAC, is followed through to the pre-prototyping phase of the design process. PSEO, another, more advanced, software tool for complex and multi-loop linkage synthesis is also presented in the concept stage of development. This type of program has the potential to automate some of the most time-consuming portions of the synthesis and analysis process with the use of a genetic algorithm and curve-matching algorithm. Additionally, it keeps much of the user’s interaction with the design process and the design itself intact, which is something not offered by existing tools incorporating similar levels of automation. Overall, this thesis is an exploration into the field of linkage design, a topic with little crossover between theory and practical design helps. It includes a review of existing synthesis tools and the development of new tools to suit complex applications such as the Skiboard. The design process for the Skiboard linkage mechanism is also presented and illustrates the way in which the creative design process is iterative, progressively informing the designer’s understanding of the functional requirements of the linkage and how to best satisfy them.

    Subjects
    mechanism
     
    design
     
    synthesis
     
    optimisation
     
    black-box
     
    Skiboard
    Collections
    • Engineering: Theses and Dissertations [2264]
    Rights
    https://canterbury.libguides.com/rights/theses

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us