A multi-channel front-end for synthetic aperture sonar

Type of content
Theses / Dissertations
Publisher's DOI/URI
Thesis discipline
Electrical Engineering
Degree name
Master of Engineering
Publisher
University of Canterbury. Electrical and Computer Engineering
Journal Title
Journal ISSN
Volume Title
Language
Date
2010
Authors
Bonnett, Blair Cameron
Abstract

Synthetic aperture sonar (SAS) is a wide-beam sonar technique commonly used for mapping the seafloor at high resolution. The Acoustics Research Group at the University of Canterbury operates a towed SAS system known as KiwiSAS-IV. This is currently being redesigned with the aim of reducing the weight, size and power requirements of the system. The long term goal is to make it capable of being mounted on an autonomous underwater vehicle (AUV) so that mapping of remote and/or dangerous waters can be accomplished without human interaction.

This thesis presents the design of the front-end electronics used to drive the 36 transducers to produce the acoustic beam and receive the returning signals after they have reflected off a target. To achieve sufficient range, the transducers are driven with a 200 Vā‚šā‚‹ā‚š signal with a maximum frequency of 110 kHz. This design uses class D switching amplifiers to generate these waveforms. The AD9271 integrated circuit, which can handle eight transducers simultaneously, is used to amplify the incoming signals and sample them at up to 50 MHz. This high sampling rate multiplied by all 36 transducers results in an amount of data which is too great for a conventional microprocessor-based system to handle. Instead, an FPGA is used to receive this data, decimate it using multiplier-free cascaded integrator-comb (CIC) filters, and then pass it to the back-end system for further processing and storage.

A prototype circuit was created to test the theory developed in this thesis. This showed that the system is capable of generating the necessary waveforms and amplifying, capturing, and decimating the returning signals. However, further refinement is required before it is able to be used in the sonar system.

Description
Citation
Keywords
synthetic aperture sonar, SAS, sonar, KiwiSAS, FPGA, CIC, cascaded integrator-comb, class D amplifier, AD9271
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Rights
Copyright Blair Cameron Bonnett