Land-Use Intensification in Grazing Systems: Plant Trait Responses and Feedbacks to Ecosystem Functioning and Resilience

Type of content
Theses / Dissertations
Publisher's DOI/URI
Thesis discipline
Forestry
Degree name
Doctor of Philosophy
Publisher
University of Canterbury. School of Forestry
Journal Title
Journal ISSN
Volume Title
Language
Date
2011
Authors
Laliberté, Etienne
Abstract

Land-use change is the single most important global driver of changes in biodiversity. Such changes in biodiversity, in turn, are expected to influence the functioning of ecosystems and their resilience to environmental perturbations and disturbances. It is widely recognised that the use of functional traits and functional diversity is best for understanding the causes and functional consequences of changes in biodiversity, but conceptual development has outpaced empirical applications. This thesis explores these ideas in grazing systems, which are expected to undergo rapid intensification of fertiliser use and grazing pressure to meet the growing global demand for livestock products.

First, a flexible framework for measuring different facets of functional diversity is described, and a new multidimensional functional diversity index, called functional dispersion (FDis), is presented. Second, two vegetation sampling methods are compared with regard to their ability to detect changes in vegetation composition. Third, shifts in plant trait distributions following land-use changes are quantified and compared to null models, and a maximum entropy approach is used to quantify the direction and strength of selection on each trait. Fourth, it is shown that these shifts in trait distributions have cascading effects on primary production, litter decomposition, soil respiration, and ultimately soil carbon sequestration. Finally, data from 18 land-use intensity gradients are used to show that land-use intensification reduces functional redundancy and response diversity, two components of biodiversity that are thought to influence ecosystem resilience to future disturbances.

This study illustrates (i) the importance of considering species functional differences to understand how plant communities react to changes in soil resource availability and grazing pressure, and (ii) how such changes directly, indirectly, and interactively control ecosystem functioning, as well as (iii) increasing the vulnerability of ecosystems to future disturbances.

Description
Citation
Keywords
land-use change, biodiversity, fertilisation, grazing intensity, grassland, primary production, carbon sequestration, litter decomposition, soil respiration, response diversity, functional redundancy
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Rights
Copyright Etienne Laliberté