Development of Passive Treatment Systems for Treating Acid Mine Drainage at Stockton Mine (2008)

Type of Content
Conference Contributions - OtherPublisher
University of Canterbury. Civil and Natural Resources EngineeringCollections
Abstract
Acid mine drainage (AMD) at Stockton Coal Mine emanates from the oxidation of pyrite within carbonaceous mudstones during mining, which subsequently releases acidity resulting in metals leaching from overburden. Water chemistry and flow were monitored at numerous seeps at Stockton. Manchester Seep, which daylights at the toe of an overburden embankment, was chosen to conduct research pertaining to development of passivetreatment systems for neutralizing acidity and sequestering metals in AMD. Median dissolved metal concentrations were 62.9 mg/L Fe, 32.5 mg/L Al, 0.0514 mg/L Cu, 0.175 mg/L Ni, 0.993 mg/L Zn and 0.00109 mg/L Cd. Sulphate-reducing bioreactors were chosen as the most feasible passive treatment technology for remediation of Manchester Seep AMD. Chemical and geotechnical parameters, including hydraulic conductivity, were determined for mixtures of organic and alkaline waste products suitable for use as bioreactor substrates. Seven mesocosm-scale bioreactors were fed aerated AMD (collected from Manchester Seep) in a laboratory for nearly four months. Bioreactors incorporating mussel shells performed the best and were capable of sequestering >0.80 mol metals/m3 substrate/day (or neutralising acidity at rates >66 g CaCO3/m2/day) while removing >98.2% of metals. Tracer studies were later conducted on two bioreactor systems containing the same substrate composition but different reactor shapes. Results will be applied to reactor models to better ascertain the relationship between reactor hydraulics and treatment performance. Pilot-scale treatment schemes incorporating three treatment stages were recently constructed to treat a portion of Manchester Seep AMD. The first stage consists of a sedimentation basin to remove sediment. The second stage includes three bioreactors in parallel to test treatment effectiveness of different substrate mixtures, depths and hydraulic configurations. Data derived from the lab study were used to optimise these designs. The final treatment stage consists of three different aerobic wetland configurations operated in parallel to compare their effectiveness at providing oxygenation and tertiary treatment of metals (primarily Fe) from bioreactor effluent.
Citation
McCauley, C., O'Sullivan, A. D., Weber, P., Trumm, D. (2008) Development of Passive Treatment Systems for Treating Acid Mine Drainage at Stockton Mine. Wellington, New Zealand: 2008 New Zealand Minerals Conference, 31 Aug-3 Sep 2008. Proceedings of the 2008 New Zealand Minerals Conference, 329-338.This citation is automatically generated and may be unreliable. Use as a guide only.
Keywords
acid mine drainage (AMD); acid rock drainage (ARD); sulphate-reducing bioreactors; Stockton Mine; minewater treatment; passive treatment systemsRelated items
Showing items related by title, author, creator and subject.
-
Development of Passive Treatment Systems for Treating Acid Mine Drainage at Stockton Mine
McCauley, C.; O'Sullivan, A.D.; Weber, P.; Trumm, D. (University of Canterbury. Civil and Natural Resources Engineering, 2008)Acid mine drainage (AMD) at Stockton Coal Mine is generated from the oxidation of pyrite in carbonaceous mudstones exposed during surface mining. Acidity production causes metals such as Fe and Al to leach from overburden ... -
Stockton Mine Acid Mine Drainage and Its Treatment using Waste Substrates in Biogeochemical Reactors
McCauley, C.; O’Sullivan, A.D.; Weber, P.; Trumm, D. (University of Canterbury. Civil and Natural Resources EngineeringUniversity of Canterbury. Geological Sciences, 2009)Thirteen acid mine drainage (AMD) sites were monitored at Stockton Coal Mine near Westport, New Zealand to identify and quantify contaminants of concern and delineate their spatial and temporal variability. Metals ... -
Research Initiatives for Developing Passive-Treatment Technologies for Ameliorating Acid Mine Drainage in New Zealand
McCauley, C.A.; O'Sullivan, A.D.; Weber, P.A.; Trumm, D.A.; Brough, A.K.; Milke, M.W. (University of Canterbury. Civil and Natural Resources Engineering, 2008)Water chemistry was monitored monthly for ten months from an acid mine drainage (AMD) seep emanating at Stockton Coal Mine within the Mangatini watershed in New Zealand. Metal concentrations of the seep water were Fe ...