• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Conference Contributions
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Conference Contributions
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    Nonlinear-dispersive GaAs FET drain-current model for harmonic balance simulation

    Thumbnail
    View/Open
    12593339_gaas.pdf (321.4Kb)
    Author
    Eccleston, K.W.
    Date
    1997
    Permanent Link
    http://hdl.handle.net/10092/3304

    Popular GaAs FET large-signal drain conduction current models depend only on instantaneous terminal voltages, and ignore important phenomena that result in low frequency dispersion. To be valid at microwave frequencies, both the dc and time-varying components of current must be accurately modelled. This paper proposes a GaAs FET drain current model, which includes rate-dependent body and thermal effects, and therefore has the capability to accurately predict both the dc and time-varying components of drain current. Further, this model is particularly suited to harmonic balance simulation of microwave circuits.

    Subjects
    Fields of Research::290000 Engineering and Technology::290900 Electrical and Electronic Engineering::290901 Electrical engineering
    Collections
    • Engineering: Conference Contributions [1818]
    Rights
    http://library.canterbury.ac.nz/ir/rights.shtml

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us