• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Conference Contributions
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Conference Contributions
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    Experimental Investigations of a Selective Weakening Approach for the Seismic Retrofit of R.C. Walls

    Thumbnail
    View/Open
    12618489_NZSEE07-M G Ireland.pdf (901.8Kb)
    Author
    Ireland, M.G.
    Pampanin, S.
    Bull, D.
    Date
    2007
    Permanent Link
    http://hdl.handle.net/10092/2811

    Current seismic retrofit strategies generally focus on increasing the strength/stiffness or upgrading the mechanical properties of a structure or element. A typical drawback of this approach is that the demand on structural and sub-structural elements can be increased. In a previous contribution by the authors (Ireland et al., 2006) a counter-intuitive but rational seismic retrofit strategy consisting of selective weakening techniques was proposed. In this paper results of experimental investigations performed on benchmark & selectively weakened structural walls at the University of Canterbury are discussed. The experimental investigations consisted of quasi-static uni-directional tests on two benchmark and two retrofitted cantilever wall specimens. The first benchmark wall specimen was detailed as typical of pre-1970’s construction practice. An equivalent wall was retrofitted using a selective weakening approach involving a horizontal cut at foundation level to allow for a controlled rocking response. The second benchmark specimen represented a more severe scenario where the inelastic behaviour was dominated by shear. A retrofit solution involving vertically segmenting the wall to improve the ductility and retain gravity carrying capacity by inducing a flexural response was implemented. The experimental results confirmed the viability and efficiency of the proposed retrofit technique towards improving the performance of structural walls. Constructability issues and suggestions for practical implementation of the proposed retrofit solution are also discussed.

    Subjects
    Fields of Research::290000 Engineering and Technology::290800 Civil Engineering::290801 Structural engineering
     
    Fields of Research::290000 Engineering and Technology::290800 Civil Engineering::290804 Construction engineering
     
    Fields of Research::290000 Engineering and Technology::290800 Civil Engineering::290805 Geotechnical engineering
    Collections
    • Engineering: Conference Contributions [2012]
    Rights
    https://hdl.handle.net/10092/17651

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us