• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Conference Contributions
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Conference Contributions
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    In-plane stiffness of wooden floor

    Thumbnail
    View/Open
    12608789_Pampanin.pdf (1.138Mb)
    Author
    Brignola, A.
    Podesta', S.
    Pampanin, S.
    Date
    2008
    Permanent Link
    http://hdl.handle.net/10092/2657

    The seismic response of existing un-reinforced masonry (URM) buildings is strongly dependent on the characteristics of wooden floors and in particular on their in-plane stiffness and on the quality of the connections between the floors and the URM elements. It is generally well-recognized that adequate in plane-stiffness and proper connections improves the three-dimensional response of the whole system and provides better distribution and transfer of forces to the lateral load resisting walls. Extensive damage observed during past earthquakes on URM buildings of different type have however highlighted serious shortcomings of typical retrofit interventions adopted in the past with the intention to stiffen the diaphragm. Recent numerical investigations have also confirmed that stiffening the diaphragm is not necessarily going to lead to an improved response, sometimes actually having detrimental effects on the response. The evaluation of the in-plane stiffness of timber floors in their as-built and retrofitted configuration is still an open question and delicate issue, with design guidelines and previous research results providing incomplete, when not controversial, suggestions to the practitioner engineers involved in the assessment and/or retrofit of these types of structures. In this contribution, a summary of the state-of-the-art related to the role of the inplane stiffness of timber floors in the seismic response of un-reinforced masonry buildings is presented and critical discussed based on the limited available experimental and numerical evidences. A framework for a performance-based assessment and retrofit strategy, capable of accounting for the effects of flexible diaphragm on the response prior and after the retrofit intervention, is then proposed. By controlling the in-plane stiffness of the diaphragm, adopting a specific strengthening (or weakening) intervention, the displacements, accelerations and internal forces demand can be maintained within targeted levels, in order to protect undesired local mechanisms and aim for a more appropriate hierarchy of strength within the whole system.

    Subjects
    Fields of Research::290000 Engineering and Technology::290800 Civil Engineering::290801 Structural engineering
     
    Fields of Research::290000 Engineering and Technology::290800 Civil Engineering::290805 Geotechnical engineering
    Collections
    • Engineering: Conference Contributions [2012]
    Rights
    https://hdl.handle.net/10092/17651

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us