Flexible Power control in Large Power Current Source Conversion

Type of content
Theses / Dissertations
Publisher's DOI/URI
Thesis discipline
Electrical Engineering
Degree name
Doctor of Philosophy
Publisher
University of Canterbury. Electrical and Computer Engineering
Journal Title
Journal ISSN
Volume Title
Language
Date
2008
Authors
Murray, Nicholas John
Abstract

This thesis describes a new concept, applicable to high-power current-sourced conversion (CSC), where a controllable firing-angle shift is introduced between series and parallel converters to enable independent active and reactive power control. The firing-shift concept solves a difficult problem, by giving thyristor based CSCs the control flexibility of pulse-width modulated (PWM) converters, but without a loss in efficiency or rating. Several configurations are developed, based on the firing-shift concept, and provide flexible, efficient solutions for both very high power HVDC transmission, and very high current industrial processes.

HVDC transmission configurations are first developed for 4-quadrant high-pulse operation, based on the series connected multi-level current reinjection (MLCR) topology. Independent reactive power control between two ends of an HVDC link are proven under firing-shift control, with high-pulse operation, and without on-load tap changing (OLTC) transformers. This is followed by application of firing-shift control to a bi-directional back-to-back HVDC link connecting two weak systems to highlight the added dc voltage control flexibility of the concept.

The fault recovery capability of an MLCR based ultra-HVDC (UHVDC) long distance transmis-sion scheme is also proven under firing-shift control. The scheme responds favourably to both ac disturbances and hard dc faults, without the risk of commutation failures and instability experienced during fault recovery of line-commutated conversion.

The two-quadrant capability of very high current rectification is also proven with configurations based on phase-shifted 12-pulse and MLCR parallel CSCs. The elimination of the electro-mechanical OLTC/satruable reactor voltage control, the high-current CSC’s biggest shortcoming, greatly improves controllability and with firing-shift control, ensures high power-factor for all load conditions. This reduces the reactive power demands on the transmission system, which results in more efficient power delivery

Description
Citation
Keywords
Thyristor self-commutated converter SCR IGCT IGBT flexibility controllability firing-shift line-commutated current source conversion rectifier inverter
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Rights
Copyright Nicholas John Murray