Classifying algorithms for SIFT-MS technology and medical diagnosis
Author
Date
2008Permanent Link
http://hdl.handle.net/10092/2443Selected Ion Flow Tube-Mass spectrometry (SIFT-MS) is an analytical technique for realtime quantification of trace gases in air or breath samples. SIFT-MS system thus offers unique potential for early, rapid detection of disease states. Identification of volatile organic compound (VOC) masses that contribute strongly towards a successful classification clearly highlights potential new biomarkers. A method utilising kernel density estimates is thus presented for classifying unknown samples. It is validated in a simple known case and a clinical setting before–after dialysis. The simple case with nitrogen in Tedlar bags returned a 100% success rate, as expected. The clinical proof-of-concept with seven tests on one patient had an ROC curve area of 0.89. These results validate the method presented and illustrate the emerging clinical potential of this technology.