• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Conference Contributions
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Conference Contributions
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    Receptor-based Models of Insulin Saturation Dynamics

    Thumbnail
    View/Open
    12612095_IASTED - Insulin Receptor Binding Models.pdf (222.2Kb)
    Author
    Andreassen, S.
    Pielmeier, U.
    Chase, J.G.
    Date
    2008
    Permanent Link
    http://hdl.handle.net/10092/2307

    Normalisation of blood glucose by intensive insulin therapy has beneficial effects on the mortality and morbidity of intensive care patients, but also increases the risk of life threatening hypoglycaemia. Attempts to improve the control of blood glucose with model based systems have shown promising results, but require that the saturation of the effect of insulin on glucose balance at high plasma insulin concentrations is modeled appropriately. This saturation is often ignored in commonly used models of glucose metabolism, such as the minimal model, but may be important in patients with reduced insulin sensitivity. In this paper three simple models of insulin saturation are explored, all of them ascribing saturation to properties of the binding between insulin and its receptor. The models can be fitted to data from patients with normal or near normal insulin sensitivity, and they all predict that the plasma concentration at which half-insulin effect is reached is about 50 mU/l, also in patients with reduced insulin sensitivity. This prediction can be tested against clinical data, and if true will lead to advice on insulin therapy that avoids infusions that exceed 8 U/hour, in order to avoid saturation and the associated risk of hypoglycaemia.

    Subjects
    medical decision support
     
    modelling
     
    intensive insulin therapy
     
    insulin pharmacodynamics
     
    Fields of Research::290000 Engineering and Technology::291500 Biomedical Engineering::291504 Biomechanical engineering
     
    Fields of Research::320000 Medical and Health Sciences::321000 Clinical Sciences::321004 Endocrinology
    Collections
    • Engineering: Conference Contributions [2012]
    Rights
    https://hdl.handle.net/10092/17651

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us