Theory of 3-4 Heap

Type of content
Theses / Dissertations
Publisher's DOI/URI
Thesis discipline
Computer Science
Degree name
Master of Science
Publisher
University of Canterbury. Computer Science and Software Engineering
Journal Title
Journal ISSN
Volume Title
Language
Date
2008
Authors
Bethlehem, Tobias
Abstract

As an alternative to the Fibonacci heap, and a variation of the 2-3 heap data structure by Tadao Takaoka, this research presents the 3-4 heap data structure. The aim is to prove that the 3-4 heap, like its counter-part 2-3 heap, also supports n insert, n delete-min, and m decrease-key operations, in O(m + nlog n) time. Many performance tests were carried out during this research comparing the 3-4 heap against the 2-3 heap and for a narrow set of circumstances the 3-4 heap outperformed the 2-3 heap.

The 2-3 heap has got a structure based on dimensions which are rigid using ternary linking and this path is made up of three nodes linked together to form a trunk, and the trunk is permitted to shrink by one. If further shrinkage is required then an adjustment is made by moving a few nodes from nearby positions to ensure the heaps rigid dimensions are retained. Should this no longer be the case, then the adjustment will trigger a make-up event, which propagates to higher dimensions, and requires amortised analysis. To aid amortised analysis, the trunk is given a measurement value called potential and this is the number of comparisons required to place each node into its correct position in ascending order using linear search.

The divergence of the 3-4 heap from the 2-3 heap is that the trunk maximum is increased by one to four and is still permitted to shrink by one. This modified data structure will have a wide range of applications as the data storage mechanism used by graph algorithms such as Dijkstra's 'Single Source Shortest Path'.

Description
Citation
Keywords
3-4 heap, 2-3 heap, Fibonacci, Dijkstra
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Rights
Copyright Tobias Bethlehem