University of Canterbury Home
    • Admin
    UC Research Repository
    UC Library
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    1. UC Home
    2. Library
    3. UC Research Repository
    4. Faculty of Science | Te Kaupeka Pūtaiao
    5. Science: Journal Articles
    6. View Item
    1. UC Home
    2.  > 
    3. Library
    4.  > 
    5. UC Research Repository
    6.  > 
    7. Faculty of Science | Te Kaupeka Pūtaiao
    8.  > 
    9. Science: Journal Articles
    10.  > 
    11. View Item

    Evaluation of Parsons Problems with Menu-Based Self-Explanation Prompts in a Mobile Python Tutor (2019)

    Thumbnail
    View/Open
    IJAIED Paper Geela Postprint.pdf (630.6Kb)
    Type of Content
    Journal Article
    UC Permalink
    http://hdl.handle.net/10092/17429
    
    Publisher's DOI/URI
    https://doi.org/10.1007/s40593-019-00184-0
    
    Publisher
    Springer Science and Business Media LLC
    ISSN
    1560-4292
    1560-4306
    Language
    English
    Collections
    • Science: Journal Articles [1139]
    Authors
    Fabic GVF
    Mitrovic, Antonija cc
    Neshatian, Kourosh cc
    show all
    Abstract

    The overarching goal of our project is to design effective learning activities for PyKinetic, a smartphone Python tutor. In this paper, we present a study using a variant of Parsons problems we designed for PyKinetic. Parsons problems contain randomized code which needs to be re-ordered to produce the desired effect. In our variant of Parsons problems, students were asked to complete the missing part(s) of some lines of code (LOCs), and rearrange the LOCs to match the problem description. In addition, we added menu-based Self-Explanation (SE) prompts. Students were asked to self-explain concepts related to incomplete LOCs they solved. Our hypotheses were: (H1) PyKinetic would be successful in supporting learning; (H2) menu-based SE prompts would result in further learning benefits; (H3) students with low prior knowledge (LP) would learn more from our Parsons problems in comparison to those with high prior knowledge (HP). We found that the participants’ scores on the post-test improved, thus showing evidence of learning in PyKinetic. The experimental group participants, who had SE prompts, showed improved learning in comparison to the control group. Further analyses revealed that LP students improved more than HP students and the improvement is even more pronounced for LP learners who selfexplained. The contributions of our work are a) pedagogically-guided design of Parsons problems with SE prompts used on smartphones, b) showing that our Parsons problems are effective in supporting learning and c) our Parsons problems with SE prompts are especially effective for students with low prior knowledge.

    Citation
    Fabic GVF, Mitrovic A, Neshatian K Evaluation of Parsons Problems with Menu-Based Self-Explanation Prompts in a Mobile Python Tutor. International Journal of Artificial Intelligence in Education.
    This citation is automatically generated and may be unreliable. Use as a guide only.
    Keywords
    Mobile Python tutor; menu-based self-explanation; Parsons problems
    ANZSRC Fields of Research
    39 - Education::3904 - Specialist studies in education::390405 - Educational technology and computing
    13 - Education::1302 - Curriculum and Pedagogy::130212 - Science, Technology and Engineering Curriculum and Pedagogy
    46 - Information and computing sciences::4612 - Software engineering::461204 - Programming languages
    08 - Information and Computing Sciences::0806 - Information Systems::080602 - Computer-Human Interaction
    08 - Information and Computing Sciences::0801 - Artificial Intelligence and Image Processing

    Related items

    Showing items related by title, author, creator and subject.

    • Investigating the effects of learning activities in a mobile Python tutor for targeting multiple coding skills. 

      Fabic GVF; Mitrovic, Antonija; Neshatian, Kourosh (2018)
      Mobile devices are increasingly being utilized for learning due to their unique features including portability for providing ubiquitous experiences. In this paper, we present PyKinetic, a mobile tutor we developed for ...
    • A comparison of different types of learning activities in a mobile Python tutor 

      Fabic G; Mitrovic, Antonija; Neshatian, Kourosh (Asia-Pacific Society for Computers in Education, 2017)
      Programming (i.e. coding) is becoming one of the skills expected for successful careers in the knowledge economy1, and is being taught at all levels, including primary and secondary schools. Programming skills are difficult ...
    • Evaluating the Use of Remixing in Scratch Projects Based on Repertoire , Lines of Code (LOC), and Elementary Patterns 

      Amanullah K; Bell T (2019)
      This Full Paper in the Research Category evaluates the use of remixing in Scratch. A feature of the Scratch programming environment is that it supports students to share their code and “remix” (modify) other students’ code. ...
    Advanced Search

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThesis DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsThesis Discipline

    Statistics

    View Usage Statistics
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer